Bioengineering

George R. Brown School of Engineering

Chair
Jennifer West

Core Faculty

Professors
Michael Deem
Rebekah Drezek
Jianpeng Ma
John McDevitt
Antonios Mikos
Rebecca Richards-Kortum
Ka-Yiu San
Jennifer West

Associate Professors
Jane Grande-Allen
Robert Raphael

Assistant Professors
Michael Diehl
Oleg Igoshin
Jeffrey Jacot
Amina Qutub
Junghae Suh

Jeffrey Tabor
Tomasz Tkaczyk

Senior Research Scientist
Joel Moake

Professors in the Practice
Maria Oden
Ann Saterbak

Lecturer
Renata Ramos

Faculty Fellow
Kurt Kasper

Emeritus Faculty
William W. Akers
J. David Hellums

Joint Appointments

Professors
John Clark
Cindy Farach-Carson
Fathi Ghorbel
Naomi Halas
Marek Kimmel
Lydia Kavaraki
Frank Tittel
Kyriacos Zygourakis

Associate Professor
Jeffrey Hartgerink
Ching-Hwa Kiang

Assistant Professors
Ramon Gonzalez
Angel A. Martí
Deepak Nagrath
Laura Segatori
Jonathan Silberg

Adjunct Appointments

Professors
Kyriacos Athanasiou
Manoop Bhutani
William G. Bornmann
William Brownell
Ill-Min Chung
Rena D'Souza
Mauro Ferrari
Charles Fraser
Ann M. Gillenwater
Craig Hartley
Karen Hirschi
Daniel Kim

King Li
Gabriel Lopez-Berestein
Peter Saggau
Jacqueline Shanks
Jason Shear
Wayne Smith
Karen Storthz
Mark Wong
Stephen Wong
Kendra Woods
Samuel Miao-Sin Wu
Degrees offered: BSB, MBE, MS, PhD

Graduate programs in bioengineering offer concentrations in areas such as biomedical imaging and diagnostics, cellular and biomolecular engineering, computational and theoretical bioengineering, drug delivery and biomaterials, systems and synthetic biology, and tissue engineering and biomechanics. Research areas include biomechanical engineering, biological systems modeling, bioinformatics, biomaterials, biomedical lasers, cellular and molecular engineering, controlled release technologies, metabolic engineering, spectroscopy, statistical mechanics, systems engineering and instrumentation, thrombosis, tissue engineering, and transport processes.

Undergraduate Program—The overall goal of the BS degree in Bioengineering (BSB) is to prepare graduates to succeed in professional careers by equipping them with the conceptual and technical expertise sought after by top graduate and medical schools, as well as by companies seeking technical skills in bioengineering. Recognizing that graduates may embark on a number of different educational and career paths, the Program Educational Objectives (PEO) that graduates are expected to exhibit or achieve with the BSB from Rice University are:

1. Graduates demonstrate technical and/or professional skills, which may include engineering problem-solving, scientific inquiry, and/or engineering design, to solve challenging problems in bioengineering and related fields.
2. Graduates are accomplished at communicating and working collaboratively in diverse work environments.
3. Graduates seeking further education at graduate, professional or medical school find appropriate levels of success in admission to and progression through these programs. Graduates entering professional careers find appropriate career progression and success.

The BSB degree is organized around a core of required courses and a selection of three technical elective courses. Because of the number of options, students should consult early with departmental advisors to plan a program that meets their needs.

Degree Requirements for BS in Bioengineering

For general university requirements, see Graduation Requirements. The curriculum for a BS degree in bioengineering requires 94 credit hours, which count toward the total of 134 hours required to graduate.
Preparation—As freshmen, students considering a major in bioengineering should take MATH 101 and 102, CHEM 121 and 122, PHYS 101 or PHYS 125, PHYS 102 or PHYS 126, and CAAM 210. Sophomore students should take MATH 211 and 212, CHEM 211, BIOC 201, ELEC 243 and MECH 211. BIOE 252 should be taken in the 1st semester of the sophomore year. BIOE 330, BIOE 320, and BIOE 322 should be taken the second semester of the sophomore year.

Students majoring in bioengineering must complete the following courses.

Core Courses

Bioengineering
- BIOE 252 Bioengineering Fundamentals
- BIOE 320 Systems Physiology Laboratory Module
- BIOE 322 Fundamentals of Systems Physiology
- BIOE 330 Bioreaction Engineering
- BIOE 332 Bioengineering Thermodynamics
- BIOE 342 Tissue Culture Laboratory
- BIOE 370 Biomaterials
- BIOE 372 Biomechanics
- BIOE 383 Biomedical Engineering Instrumentation
- BIOE 385 Biomedical Instrumentation Laboratory
- BIOE 391 Numerical Methods
- BIOE 420 Biosystems Transport and Reaction Processes
- BIOE 440 Statistics for Bioengineering
- BIOE 442* Tissue Engineering Laboratory Module
- BIOE 443* Bioprocessing Laboratory Module
- BIOE 444* Mechanical Testing Laboratory Module
- BIOE 445* Advanced Instrumentation Laboratory
- BIOE 446* Computational Modeling Laboratory

Biosciences
- BIOC 201 Introductory Biology
- BIOC 341 Cell Biology

Chemistry
- CHEM 121 General Chemistry I
- CHEM 122 General Chemistry II
- CHEM 211 Organic Chemistry I

Computational and Applied Mathematics
- CAAM 210 Introduction to Engineering Computation

Electrical Engineering
- ELEC 243 Electronic Measurement Systems

Math
- MATH 101 Single Variable Calculus I
- MATH 102 Single Variable Calculus II
- MATH 211 ODEs and Linear Algebra
- MATH 212 Multivariable Calculus

Mechanical Engineering
- MECH 211 Engineering Mechanics

Physics
- PHYS 101, PHYS 111, or PHYS 125 Mechanics
- PHYS 102, PHYS 112, or PHYS 126 Electricity and Magnetism

*Students must take two of the five listed advanced laboratory modules: BIOE 442, 443, 444, 445, and 446.

Three technical elective courses are required. All three elective courses must be engineering courses. A combination of technical electives must be selected that meets a minimum of six engineering points. The technical elective courses and their engineering points are announced during registration each semester.

Undergraduate Minor—The Department of Bioengineering collaborates with a number of departments to offer Rice undergraduate students a minor in global health technologies (GLHT) through the Beyond Traditional Borders (BTB) initiative—a unique, multidisciplinary program to educate and train students to reach beyond traditional disciplinary and geographic boundaries to understand, address, and solve global health disparities. With complementary contributions from the humanities, social sciences, policy, bioscience, and
engineering programs at Rice, the GLHT minor prepares students to integrate diverse perspectives as they develop solutions to the complex problems of global health, using the formal approach of the engineering design process.

See GLOBAL HEALTH TECHNOLOGIES in the Departments and Interdisciplinary Programs section for minor requirements.

Graduate Program—To train the next generation of leaders in bioengineering, we have built an innovative teaching program that transcends boundaries between bioengineering, basic science, and clinical medicine, integrating the academic, industrial, and societal perspectives.

Our hands-on approach to education is supported by a long standing tradition of cross-disciplinary research and education. The Rice bioengineering program is a comprehensive training program that provides student with:

- A fundamental understanding of the life and medical sciences
- Advanced analytical and engineering capabilities,
- Translational research that transfers biotechnical advances from bench to bedside

With this educational background, graduates will be well prepared to participate in independent or collaborative research and development endeavors in industry or academia.

Degree Requirements for MBE and MS and PhD in Bioengineering

For general university requirements, see Graduate Degrees.

To make sure scores are available when admission decisions are made, applicants need to register to take the GRE and TOEFL as required before September for the year in which they are applying. Applicants should request transcripts and letters of recommendation before September, as well, to give senders time to get the material to Rice University by the January 15 deadline. The application deadline for MBE students is April 30th. Application materials received after the January 15 deadline will not be considered. Once admitted, departmental policy requires full-time students to be registered for at least 12 credit hours each semester.

MBE Program—The Master of Bioengineering degree is intended for those having a BA or BS degree in an engineering or science discipline. To obtain a Master of Bioengineering degree, the following requirements must be completed.

- Show evidence on their undergraduate transcript of completion of fundamentals of systems physiology, cell biology, and statistics. (If courses were not taken for an undergraduate degree, they must be completed at the beginning of the MBE program. Only one of these courses may be used as credit toward the 30 hours of required courses.)
- Curriculum has to be approved by the Academic Affairs Committee of the bioengineering department. This will be done on a case-by-case basis.
- A total of 30 credit hours is required (courses must be above and beyond the requirement for the undergraduate degree). Of these 30 hours, at least 24 must be taken at Rice.
- At least 15 credit hours must be taken as BIOE courses.
• Required courses include:
 • Five BIOE courses (15 hours)
 • One (400 level or above) MATH, STAT, or CAAM course (3 hours)
 • Two additional engineering courses (6 hours)
 • Two additional elective courses approved by the Academic Affairs Committee (6 hours).
• Maintain an average GPA of 3.0 or higher.
• All classes must be upper level (300 or above) and taken for a letter grade
• Must be enrolled full time for at least one semester

MS Program—Candidates for the MS degree must:
• Complete at least 18 approved semester hours of foundation, supporting, and advanced courses while maintaining a grade point average of 3.0
• MS students must earn additional credits they need for graduation by registering for the master's research course BIOE 500 during the terms they are engaged in research.
• Fulfill a teaching requirement
• Submit an original research thesis
• Defend the thesis in a public oral examination

PhD Program—Candidates for the PhD degree must:
• Show evidence on their undergraduate transcript of completion of fundamentals of systems physiology, cell biology, and statistics. (If courses were not taken for an undergraduate degree, they must be completed at the beginning of the PhD program. Only one of these courses may be used as credit for the 30 required courses.)
• Complete at least 30 approved semester hours of foundation, supporting, and advanced courses with high standing.
• Fulfill a teaching requirement. After their first semester in residence, students may be asked to spend the equivalent of six to 10 hours per week for a total of three semesters on teaching assignments.
• Submit a thesis proposal. PhD students must submit and successfully defend their thesis proposals by the end of their fourth semester in residence.
• Submit a thesis that provides evidence of their ability to carry out original research in a specialized area of bioengineering.
• Defend the thesis in a public oral examination.
• Graduate students take required courses and electives in the following areas:
 • Systems and Synthetic Biology
 • Biomaterials and Drug Delivery
 • Tissue Engineering and Biomechanics
 • Computational and Theoretical Bioengineering
 • Biomedical Imaging and Diagnostics
 • Cellular and Biomolecular Engineering

See BIOE in the Courses of Instruction section.