Studies in mechanical engineering can lead to specialization in one or more of a diverse set of areas, including mechanics, computational fluid mechanics and fluid–structure interactions, stochastic mechanics, fluid dynamics, heat transfer, dynamics and control, robotics, biomechanics, and aerospace engineering. Studies in materials science may lead to specialization in one of several areas, including nanotechnology, metals physics, statistical mechanics, metallic solid thermodynamics, materials chemistry, aspects of composites, coatings and thin films, and interface science.

The graduate program offers professional degrees in both materials science and engineering, which are based on undergraduate preparation in a number of related fields, and mechanical engineering, which permits specialization in the areas previously mentioned. Graduate students also may pursue research degrees. Faculty research areas are indicated in the previous paragraph. A joint MBA/Master of Engineering degree is available in conjunction with the Jesse H. Jones Graduate School of Business. Also, a combined MD and advanced research degree for research careers in medicine is available with Baylor College of Medicine.

The graduate program, in its comprehensive educational and research activities, collaborates with other departments at Rice and other institutions in Houston,
including those in the Texas Medical Center. Collaborations also are extended to universities in the United States, Europe, Japan, Mexico, and South America. International collaborations include joint research activities and faculty and student visitor exchanges.

Degree Requirements for BA, BS in Mechanical Engineering or BA and BS in Materials Science and Engineering

For general university requirements, see Graduation Requirements. The BA program in either mechanical engineering or materials science and engineering is highly flexible, involves less technical content than the BS, and allows students greater freedom to pursue areas of interest outside of engineering.

The two BS programs prepare students for the professional practice of engineering. During their senior year, mechanical engineering students in the BS program take courses in design application while completing a major design project, and materials science and engineering students in the BS program work on a design problem in an industrial setting. The program's goals and objectives are available on the departmental website.

BS in Mechanical Engineering Program—The Bachelor of Science in Mechanical Engineering (BSME) program is accredited by the Accreditation Board for Engineering and Technology (ABET). To contact ABET: ABET, Inc., 111 Market Place, Suite 1050, Baltimore, MD 21202, Phone: 410-347-7700, Fax: 410-625-2238, www.abet.org. Lists of representative undergraduate courses and the usual order in which they are taken are available from the department. The BSME degree contains a core of required courses and selected electives from one of five specialization areas. The requirements (for a total of 132 hours) are:

Basic Mathematics and Science (30 hours)

- CHEM 121–122 General Chemistry
- MATH 101 Single Variable Calculus I
- MATH 102 Single Variable Calculus II
- MATH 211 Ordinary Differential Equations and Linear Algebra
- MATH 212 Multivariable Calculus
- MSCI 301 Materials Science
- PHYS 101 Mechanics
- PHYS 102 Electricity and Magnetism

Computational and Applied Mathematics (nine hours)

- CAAM 210 Engineering Computation
- CAAM 335 Matrix Analysis
- CAAM 336 Differential Equations in Science and Engineering

Senior Design (seven hours)

- MECH 407 Mechanical Design Project I
- MECH 408 Mechanical Design Project II

Labs (four hours)

- MECH 331 Mechanics Lab
- MECH 332 Thermo/Fluids Lab
- MECH 340 Industrial Process Lab
- MECH 431 Senior Lab

Mechanical Engineering (31 hours)

- MECH 200 Classical Thermodynamics
- MECH 211 Engineering Mechanics
- MECH 311 Mechanics-Deformable Solids
- MECH 343 Modeling of Dynamic Systems
- MECH 371 Fluid Mechanics I
- MECH 401 Machine Design
- MECH 412 Vibrations
- MECH 420 Fundamentals of Control Systems
- MECH 472 Thermal Systems Design
- MECH 481 Heat Transfer

Limited Electives:

- STAT 305, 310, or 331

Technical Electives (nine hours)

Distribution Electives (24 hours)

Free Electives (15 hours)
Technical Electives—Students are required to take a total of three technical electives. A minimum of two of these courses must come from Group A. The remaining course can come from Group A or B. Group A courses are fundamental courses in the following focus areas: aerospace engineering (AE), computational engineering (CompE), fluid mechanics and thermal science (FT), solid mechanics and materials (SMM), and system dynamics and control (SDC). Group B courses are additional technical electives that complement the focus areas listed above.

Group A

- MECH 400 *Advanced Mechanics of Materials* (SMM)
- MECH 403 *Computer Aided Design* (COMPE, SMM)
- MECH 411 *Dyn and Control of Mech Sys* (SDC)
- MECH 417 *Finite Element Analysis* (CompE)
- MECH 454 *Comp. Fluid Mechanics* (AE, CompE, FT)
- MECH 473 *Advanced Fluid Mechanics II* (FT)
- MECH 594 *Introduction to Aerodynamics* (AE, FT)
- MSCI 402 *Mech Properties of Materials* (SMM)

Group B—See department for current listing

BA with a Major in Mechanical Engineering Program—Students seeking the BA degree with a major in mechanical engineering must complete 120 hours with at least 67 semester hours in courses specified by the department, along with 24 hours of university distribution electives and 29 hours of free electives. Lists of courses, including general university requirements and the usual order in which students take them, are available from the department. The BA program mirrors the BSME program in the freshman and sophomore years, with the exceptions that MECH 331 and MECH 340 are not required. Specific major requirements are completed in the junior and senior years, along with electives. A summary appears below:

Freshman Year

Same as BS with 24 major and nine elective hours for 33 hours.

Sophomore Year

Same as BS (except MECH 331 and 340 are not required), with 18 major and 15 elective hours for 33 hours.

Junior and Senior Years

25 major and 29 electives for 54 hours. The following courses are required in junior and senior years:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAAM 335</td>
<td>Matrix Analysis (3)</td>
</tr>
<tr>
<td>CAAM 336</td>
<td>Differential Equations in Science and Engineering (3)</td>
</tr>
<tr>
<td>MECH 343</td>
<td>Modeling of Dynamic Systems (4)</td>
</tr>
<tr>
<td>MECH 371</td>
<td>Fluid Mechanics I (3)</td>
</tr>
<tr>
<td>MECH 401</td>
<td>Machine Design (3)</td>
</tr>
<tr>
<td>MECH 412</td>
<td>Vibrations (3)</td>
</tr>
<tr>
<td>MECH 420</td>
<td>Fundamentals of Control Systems (3)</td>
</tr>
<tr>
<td>MECH 481</td>
<td>Heat Transfer (3)</td>
</tr>
</tbody>
</table>

BA with a Major in Materials Science and Engineering Program—Students seeking the BA degree with a major in materials science and engineering must complete at least 52 hours in courses specified by the department plus additional hours for a total of 120 hours at graduation.
BSMS Program—Students seeking the BSMS must complete at least 91 semester hours in courses specified by the department within the total requirements of 134 hours. Basic departmental course requirements for the BSMS are as follows:

CHEM 121–122 General Chemistry
MATH 101 and 102 Single Variable Calculus I and II
MATH 211 Ordinary Differential Equations and Linear Algebra
MATH 212 Multivariable Calculus
PHYS 101 Mechanics
PHYS 102 Electricity and Magnetism

Specific requirements
CAAM 210 Introduction to Engineering Computation
CAAM 335 Matrix Analysis
CEVE 300 Mechanics of Solids
ELEC 241 Fundamentals of Electrical Engineering I (or ELEC 243 Introduction to Electronics)
MECH 211 Engineering Mechanics
MSCI 301 Materials Science
MSCI 303 Materials Science Junior Lab
MSCI 311 Introduction to Design
MSCI 401 Thermodynamics and Transport Phenomena in Materials Science
MSCI 402 Mechanical Properties of Materials
MSCI 404 Materials Engineering and Design
MSCI 406 Physical Properties of Solids (or MSCI 415 Ceramics and Glasses)
MSCI 411 Metallography and Phase Relations (or MSCI 415 Ceramics and Glasses)
MSCI 435 Crystallography and Diffraction
MSCI 500/501 Materials Science Seminar
MSCI 537 Materials Science Senior Lab
MSCI 594 Properties of Polymers

One course from the following
PHYS 201 Waves and Optics
CHEM 211 Organic Chemistry
CHEM 311 Physical Chemistry

Electives
One approved science elective (at the 200 level or higher)
One approved engineering science elective (not MSCI)
One approved technical elective

Degree Requirements for MAE, MME, MMS, MS, and PhD in Mechanical Engineering or Materials Science and Engineering

Professional Degree Programs—The professional degrees offered by this department—master of mechanical engineering (MME) and the master of material science (MMS)—are open to students who have shown academic excellence in their undergraduate studies. The MME degree with a concentration in aerospace engineering (MAE) is for students intending to pursue a technical career in the aerospace industry.

For general university requirements, see Graduate Degrees. For the MME, and MMS degrees, students must complete 30 semester hours of course work. Lists of required and suggested courses are available from the department. Students should develop a specific plan of study based on their particular interests and discussions with their advisor.

Research Degree Programs—The programs leading to the MS and PhD degrees are open to students who have demonstrated outstanding performance in their undergraduate studies. The granting of a graduate research degree presupposes academic work of superior quality and a demonstrated ability to do original research.

For general university requirements, see Graduate Degrees. Course requirements for the research degrees vary depending on the extent of individual undergraduate preparation as well as each student's performance in graduate courses and on qualifying examinations. For both the MS and PhD degrees, students must
present a thesis that comprises an original contribution to knowledge and defend it in a public oral examination.

Each graduate student is expected to render research and/or instructional assistance to the department not to exceed 10 hours per week. Graduate student work assignments will be made by the department chair at the beginning of each semester.

All graduate students (except professional master's students, MME/MMS) must attend at least 75 percent of the MEMS seminars. For details, please see the degree requirements on the Undergraduate Program page on the MEMS website at mems.rice.edu.

I. Requirements For The Professional Master’s Degrees (MAE, MME, And MMS)

Students are expected to complete 30 semester hours of courses approved by the department (a one-semester course is usually three semester hours credit). Requirements and specific courses to be taken depend on each student's field of study. Students must discuss their individual degree plans and programs of study with their advisors. For details, please see the degree requirements on the Undergraduate Program page on the MEMS website at mems.rice.edu.

<table>
<thead>
<tr>
<th>Degree At Entrance</th>
<th>4-year BS</th>
<th>4-year BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum graduate level semester hours required (course work)</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

See Graduation Requirements, in Undergraduate Students section, for total semester hours required by Rice University.

II. Requirements For The MS Degree

Full-time students seeking the MS degree are expected to complete all the requirements for the degree within two calendar years following entrance into the program. Continuation in the program beyond this time limit will require special approval of the department.

All entering graduate students pursuing a thesis degree program will be subject to a preliminary evaluation of their candidacy for the highest degree program they intend to pursue. The evaluation will be conducted by the end of the second semester of enrollment in the graduate program in the MEMS department.

Each candidate for the MS degree must complete a thesis demonstrating ability in research of a fundamental nature (analytical or experimental). It is expected that the research will be of sufficient importance and quality that positive results would lead to publication. The examination will be conducted by a committee consisting of at least three members. Two, including the committee chair, must be members of the department.

The minimum semester hours of course work (a one-semester course is usually three semester hours credit) required for the MS degree are tabulated below as a function of the degree held on entrance into the program. Research and thesis hours, as well as seminar hours, do not count towards these course requirements. In all cases, a student's specific course of study is formulated in consultation with the departmental advisor (thesis director) and must be approved by the department.
III. Requirements For The PhD Degree

Full-time students seeking the PhD degree are expected to complete all the requirements for the degree within five calendar years following entrance into the program. Continuation in the program beyond this time limit will require special approval of the department.

All entering graduate students pursuing a thesis degree program will be subject to a preliminary evaluation of their candidacy for the highest degree program they intend to pursue. The evaluation will be conducted by the end of the second semester of enrollment in the graduate program in the MEMS department.

By the end of the third year of enrollment in the graduate program in the MEMS department, the student must pass an oral qualifying examination.

Students pursuing a PhD degree in materials science will be examined in four areas: 1) thermodynamics and kinetics; 2) structures, crystallography, and diffraction; 3) mechanical properties; and 4) electrical, optical, and magnetic properties.

Each candidate for the PhD must complete a thesis that constitutes an original contribution to scientific knowledge (analytical or experimental). It is expected that the research will be of sufficient importance and quality that positive results would lead to publication. On completion of the thesis, each candidate for the PhD degree must pass a final public oral examination. The examination will be conducted by a committee consisting of at least three members. Two, including the committee chair, must be members of the department. One member must be from another department within the university.

The minimum semester hours of course work (a one-semester course is usually three semester hours credit) required are tabulated below as a function of the degree held on entrance into the program. In all cases, a student’s course of study is formulated in consultation with the thesis director and must be approved by the department.

<table>
<thead>
<tr>
<th>Degree At Entrance</th>
<th>5-year</th>
<th>4-year BS</th>
<th>4-year BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum graduate level semester hours required (course work)</td>
<td>12</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

For details, please see the degree requirements on the Undergraduate Program page on the MEMS website at mems.rice.edu.

See MECH and MSCI in the Courses of Instruction section.