BIOCHEMISTRY & CELL BIOLOGY (BIOC)

BIOC 110 - INTRODUCTION TO RESEARCH
Short Title: INTRODUCTION TO RESEARCH
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 1-5
Restrictions: Enrollment is limited to Undergraduate or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This course is only for visiting high school juniors and seniors and undergraduates conducting research for the first time. The students will conduct scientific research in the laboratories of the Rice faculty in the areas of Biochemistry & Cell Biology and Ecology & Evolutionary Biology. During the five-week course, students will engage in full time research and will be mentored by experienced researchers under the supervision of Rice faculty. Participating students will also receive formal instruction on the basics of scientific research and innovation. Visiting high school students and undergraduates must complete visiting student application process. Instructions to do this can be found in the Application Checklist at summer.rice.edu. Instructor Permission Required. Repeatable for Credit.

BIOC 112 - INTRODUCTORY BIOLOGICAL RESEARCH CHALLENGES
Short Title: INTRO BIOL RESEARCH CHALLENGES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Teams of students work on investigative, client-based projects with opportunities to design experiments, analyze data, and communicate their findings. This course is recommended for students interested in the Biosciences major who have very limited practical laboratory experience. Only first year students may enroll. Mutually Exclusive: Credit cannot be earned for BIOC 112 and BIOC 111/NSCI 120.

BIOC 118 - FRESHMAN SEMINAR IN LOCAL BIOLOGY RESEARCH (BCB)
Short Title: FRESHMAN BIOLOGY SEMINAR (BCB)
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: A 7-week seminar course to introduce freshmen prospective biologists to the excitement of research at Rice and the Medical Center and to provide context with which to think about facts presented in biosciences textbooks. Small groups will meet weekly with a graduate student or postdoctoral researcher to explore a published research article by a local lab, gaining background information about the subject and exposure to the research techniques. In the final session, the group will tour the lab that produced the featured article. Additional tours and activities TBA. All first-year non-transfer students are eligible to enroll in BIOC 118 regardless of AP credit. This course meets in the second half of the semester and features research in the Program of Biochemistry and Cell Biology. Mutually Exclusive: Credit cannot be earned for BIOC 118 and BIOC 115/FSEM 115.
Course URL: www.bioc.rice.edu/bioc115/

BIOC 122 - CURRENT TOPICS IN BIOLOGY
Short Title: BIOLOGY FOR VOTERS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Students cannot enroll who have a major in Biochemistry and Cell Biology, Biological Sciences or Ecology & Evolutionary Biology. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Designer babies, climate change, the anti-vaccine movement, gender identity, evolution...exploring these and other socially relevant topics will provide a context for learning essential concepts in biology and ways to distinguish science truth from science fiction.
Course URL: www.ruf.rice.edu/~bioslabs/bioc122/

BIOC 129 - BRAINSTEM - TEACHING STEM THROUGH NEUROSCIENCE
Short Title: BRAINSTEM
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Internship/Practicum
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: BrainSTEM is a service organization that teaches STEM subjects through the lens of neuroscience. We perform hands-on, small-group activities with ~45 students per week. This course will prepare you to communicate science in a both effective and entertaining manner, as well as build your skills in managing small groups. More information can be found at ‘www.brainstem.club.’ Repeatable for Credit.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Short Title</th>
<th>Department</th>
<th>Grade Mode</th>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Restrictions</th>
<th>Course Level</th>
<th>Prerequisite(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>INTRODUCTORY BIOLOGY</td>
<td>INTRODUCTORY BIOLOGY</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>Chemistry and energetics, cell physiology, cell biology, Mendelian genetics, molecular genetics, developmental biology, and plant physiology.</td>
</tr>
<tr>
<td>BIOC 205</td>
<td>MICROBE HUNTERS REVISITED</td>
<td>MICROBE HUNTERS REVISITED</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Seminar</td>
<td>2</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>This seminar will review important microbiologists and their discoveries of infectious agents. From Pasteur to Prusiner, we will review the infectious agents they described, as well as the methods used for their discovery. The classic text by Paul de Kruif entitled “Microbe Hunters” will be the basis for half of the course material.</td>
</tr>
<tr>
<td>BIOC 210</td>
<td>INTRODUCTION TO RESEARCH</td>
<td>INTRODUCTION TO RESEARCH</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Research</td>
<td>1-5</td>
<td>Enrollment is limited to Undergraduate level students.</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>This course is only for Rice students conducting research for the first time. The students will conduct scientific research in the laboratories of the Rice faculty in the areas of Biochemistry & Cell Biology and Ecology & Evolutionary Biology. During the five-week course, students will engage in full time research and will be mentored by experienced researchers under the supervision of Rice faculty. Participating students will also receive formal instruction on the basics of scientific research and innovation. Rice students will need a special registration form or ask the faculty member for permission to register. Instructor Permission Required. Cross-list: EBIO 210. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOC 211</td>
<td>INTERMEDIATE EXPERIMENTAL BIOSCIENCES</td>
<td>EXPERIMENTAL BIOSCIENCES</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Laboratory</td>
<td>2</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Lower-Level</td>
<td>BIOC 201 (may be taken concurrently) and</td>
<td>Introduction to the scientific method, principles of experimental design, selected research strategies, record keeping, and technical communication as related to biological science. The prereq BIOC 201 may be taken concurrently with BIOC 211. Registration is excluded for Fall 2019 New Matrics. Mutually Exclusive: Credit cannot be earned for BIOC 211 and BIOC 212.</td>
</tr>
<tr>
<td>BIOC 212</td>
<td>INTERMEDIATE EXPERIMENTAL CELLULAR AND MOLECULAR NEUROSCIENCE</td>
<td>EXPERIMENTAL NEUROSCIENCE</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Laboratory</td>
<td>2</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Lower-Level</td>
<td>BIOC 201 (may be taken concurrently) and</td>
<td>Introduction to the scientific method, principles of experimental design, selected research strategies, record keeping, and technical communication as related to neuroscience. This course is primarily intended for prospective and declared NEUR majors. The pre-req BIOC 201 may be taken concurrently with BIOC 212. Instructor Permission Required. Mutually Exclusive: Credit cannot be earned for BIOC 212 and BIOC 211.</td>
</tr>
<tr>
<td>BIOC 215</td>
<td>BIOSCIENCES LAB TEACHING</td>
<td>BIOC LAB TEACHING</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Laboratory</td>
<td>1-3</td>
<td>Enrollment is limited to Undergraduate level students.</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>Undergraduate teaching in a biosciences laboratory. Provide group and individual instruction and feedback to undergraduates during and outside of laboratory classes. Instructor Permission Required. Repeatable for Credit.</td>
</tr>
</tbody>
</table>

Restrictions:
- Undergraduate: Open to students enrolled in the Undergraduate program.
- Undergraduate Professional: Open to students enrolled in the Undergraduate Professional program.
- Visiting Undergraduate: Open to visiting students who are not enrolled in the Undergraduate program.
- Undergraduate Lower-Level: Open to students enrolled in the Undergraduate program, specifically those at the lower-level.

Course Level:
- Undergraduate Lower-Level: Courses are designed for students at the introductory level in their undergraduate program.

Credit Hours:
- Courses may vary in credit hours, typically ranging from 1 to 5.

Prerequisite(s):
- Prerequisites may include successful completion of previous courses or approval from the instructor.

Description:
- Descriptions provide an overview of the course content, objectives, and expected outcomes.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Department</th>
<th>Course Level</th>
<th>Restrictions</th>
<th>Credit Hours</th>
<th>Course Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 216</td>
<td>DISCUSSION SECTION TEACHING</td>
<td>Biosciences</td>
<td>Professional or Visiting Undergraduate level students</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>1</td>
<td>Independent Study</td>
<td>Provides one hour of university credit for faculty-approved internship. Students must obtain approval from the instructor and must an offer letter from the internship provider as well as a letter indicating completion and satisfactory performance. Instructor Permission Required. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOC 220</td>
<td>FORENSIC BIOLOGY AND CRIMINALISTICS</td>
<td>Biosciences</td>
<td>Professional or Visiting Undergraduate level students</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>1</td>
<td>Lecture</td>
<td>This course will introduce students to certain areas of forensic science including - crime scene analysis, forensic serology, molecular genetics (DNA), forensic toxicology; drugs, and the identification of biological fluids such as blood, saliva, and semen, with case studies and a potential field trip. The course is designed for biology and chemistry students, for students interested in the application of biosciences in DNA and crime scene analysis.</td>
</tr>
<tr>
<td>BIOC 228</td>
<td>SPECIAL TOPICS</td>
<td>Biosciences</td>
<td>Professional or Visiting Undergraduate level students</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>3</td>
<td>Lecture</td>
<td>Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOC 299</td>
<td>EXPERIENTIAL EDUCATION IN BIOSCIENCES</td>
<td>Biosciences</td>
<td>Professional or Visiting Undergraduate level students</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>1</td>
<td>Lecture</td>
<td>Provides one hour of university credit for faculty-approved internship. Students must obtain approval from the instructor and must an offer letter from the internship provider as well as a letter indicating completion and satisfactory performance. Instructor Permission Required. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOC 300</td>
<td>PARADIGMS IN BIOCHEMISTRY AND CELL BIOLOGY</td>
<td>Biosciences</td>
<td>Professional or Visiting Undergraduate level students</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>3</td>
<td>Lecture</td>
<td>Examination of paradigms in Biochemistry and Cell Biology with a focus on the ”central dogma” of molecular biology. Recommended strongly for students with Advanced Placement in Biology and designed for prospective BIOC majors. This course is strongly recommended as preparation for BIOC 341 (Cell Biology). Enrollment is restricted to students who have not yet taken BIOC 301 or BIOC 341. Recommended Prerequisite(s): Recommended strongly for students with Advanced Placement in Biology and designed for prospective BIOC majors. For students with AP credit for BIOS/BIOC 201, this course is strongly recommended as preparation for BIOC 341 (Cell Biology).</td>
</tr>
<tr>
<td>BIOC 301</td>
<td>BIOCHEMISTRY I</td>
<td>Biosciences</td>
<td>Professional or Visiting Undergraduate level students</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>3</td>
<td>Lecture</td>
<td>The second in an integrated sequence of three courses (BIOC 201, 301, 302). Structure and function of proteins, enzymes, and nucleic acids; enzyme kinetics; glycolysis, aerobic metabolism, and energy coupling. Recommended Prerequisite(s): CHEM 212.</td>
</tr>
<tr>
<td>BIOC 302</td>
<td>BIOCHEMISTRY II</td>
<td>Biosciences</td>
<td>Professional or Visiting Undergraduate level students</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>3</td>
<td>Lecture</td>
<td>The final in an integrated sequence of three courses (BIOC 201, 301, 302). In depth study of carbohydrate, amino acid, and lipid metabolic pathways, hormone regulation of metabolic path ways, key cell signaling mechanisms, and the structural biology of DNA replication, transcription, and translation into proteins. Course also involves analysis of primary scientific literature. Recommended Prerequisite(s): CHEM 212 or CHEM 320.</td>
</tr>
</tbody>
</table>
BIOC 310 - INDEPENDENT RESEARCH FOR BIOCHEMISTRY AND CELL BIOLOGY UNDERGRADUATES
Short Title: IND RES FOR BIOC UNDERGRADS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 111 or BIOC 211 or BIOC 212 or BIOC 112 or NSCI 120
Description: Independent research in Rice BCB faculty laboratories (sections 2 and above) or other Texas Medical Center laboratories (sections 1). Students spend at least 3 hours per week in the laboratory for each semester hour of credit. If taken for 3 or more hours, counts as one required 300+ level lab course (not BIOC 311). Requires a proposal abstract, weekly reports, and a research paper (fall semester) or a proposal abstract, weekly reports, and a poster presentation (spring semester). Students wishing to perform their research in an off-campus lab must apply online (www.bioc.rice.edu/bioc310/) at least 3 weeks prior to the start of classes and may not register for fewer than 3 credit hours. Students taking BIOC 310 in the full summer semester must be available to do full-time research for a minimum of 6 weeks or part-time equivalent which should equal to a total of 126 hours working in the lab. Instructor Permission Required. Recommended Prerequisite(s): Students are strongly advised to secure research advisors and register for the class well in advance of the start of classes. Repeatable for Credit.
Course URL: www.bioc.rice.edu/bioc310/

BIOC 311 - ADVANCED EXPERIMENTAL BIOSCIENCES
Short Title: ADV EXPERIMENTAL BIOSCIENCES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Students with a class of Freshman may not enroll. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 211 or BIOC 212) and BIOC 301 (may be taken concurrently)
Description: Advancement of biochemical laboratory methods, record keeping, technical communication skills, and research strategies. Students will maintain a research quality laboratory notebook and will submit a paper in the style of a journal article. Pre-req BIOC 301 may be taken concurrently with BIOC 311.

BIOC 313 - EXPERIMENTAL SYNTHETIC BIOLOGY
Short Title: EXPERIMENTAL SYNTHETIC BIOL
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 211 or BIOC 212
Description: Students learn molecular biological procedures commonly used to build and characterize synthetic genetic circuits. Teams of students work on a research project in the interdisciplinary field of synthetic biology. Students continue to develop technical communication skills.

BIOC 318 - MICROBIOLOGY LABORATORY
Short Title: MICROBIOLOGY LABORATORY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 211 or BIOC 212
Description: In teams, students will participate in ongoing faculty research by isolating and characterizing bacterial species from environmental samples. Offered in the second half of each semester.
Course URL: www.ruf.rice.edu/~bioslabs/bios318/

BIOC 320 - LABORATORY IN TISSUE CULTURE
Short Title: LABORATORY IN TISSUE CULTURE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 440 or STAT 440 or BIOC 311
Description: Introduction to tissue culture techniques, including cell passage, cell viability, and cell attachment and proliferation assays. Students complete quantitative analysis of their data. Engineering design and applications are featured in graded work. Sections 1 and 2 are taught during the first half of the semester. Sections 3 and 4 are taught during the second half of the semester. Students may be required to attend lab on a university holiday. Instructor Permission Required. Cross-list: BIOE 342.

BIOC 329 - ANIMAL BIOLOGY AND PHYSIOLOGY
Short Title: ANIMAL BIOLOGY AND PHYSIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 201 or EBIO 202
Description: The evolution and systematics of the animal kingdom with consideration of functional anatomy, comparative physiology, behavior, medical implications and resource management. Cross-list: EBIO 329. Mutually Exclusive: Credit cannot be earned for BIOC 329 and EBIO 529.
BIOC 331 - BIOLOGY OF INFECTIOUS DISEASES
Short Title: BIOLOGY OF INFECTIOUS DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 211 or (PHYS 101 and PHYS 102) or (PHYS 125 and PHYS 126)
Description: This course gives a broad overview of the biology of infectious diseases using examples from humans, plants, and animals. Topics include diversity of diseases, mechanisms of disease transmission, epidemiology, population regulation, evolution of virulence, disease dynamics in natural communities and disease invasion and conservation biology. Cross-list: EBIO 331.

BIOC 332 - SYSTEMS PHYSIOLOGY
Short Title: SYSTEMS PHYSIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOE 302
Description: Principles of biological evolution. Topics include natural selection, adaptation, molecular evolution, formation of new species, the fossil record, biogeography, and principles of classification. Cross-list: EBIO 334. Graduate/Undergraduate Equivalency: BIOC 534. Mutually Exclusive: Credit cannot be earned for BIOC 334 and BIOC 534.
Course URL: http://www.ruf.rice.edu/~queller/Bios334/
BIOC 344 - MOLECULAR BIOLOGY AND GENETICS
Short Title: MOLECULAR BIOLOGY & GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Mendelian genetics, population genetics, mapping, gene expression and regulation, genetic engineering, DNA replication and recombination, human genetics, genetic disease and gene therapy. Recommended Prerequisite(s): BIOC 201.

BIOC 350 - INTRODUCTION TO MATHEMATICAL BIOLOGY
Short Title: INTRODUCTION TO MATH BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (PHYS 126 or PHYS 102 or PHYS 112 or PHYS 142) and MATH 211 and (BIOC 201 or EBIO 202)
Description: This class provides an introduction to mathematical concepts in biology and medicine. Students will learn to derive and manipulate mathematical equations describing concepts at all levels of biological organization, from biochemical reactions to population dynamics and epidemiology.

BIOC 352 - PHYSICAL CHEMISTRY FOR THE BIOSCIENCES
Short Title: PHYS CHEM FOR BIOSCIENCES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (PHYS 126 or PHYS 102 or PHYS 112 or PHYS 142) and BIOC 301
Description: Study of selected aspects of physical chemistry as it relates to the biosciences. Includes thermodynamics, reaction rate theory, quantum mechanics, and atomic and molecular structure.

BIOC 361 - METABOLIC ENGINEERING FOR GLOBAL HEALTH ENVIRONMENTS
Short Title: METAB ENG GLOBAL HEALTH ENVMT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOE 362 or GLHT 362) and (PHYS 126 or PHYS 102 or PHYS 112 or PHYS 142) and MATH 102
Description: Importance of nutritional and pharmaceutical compounds, impact of cost of compounds on global health; Overview of biochemical pathways; metabolite analysis; Genetic engineering and molecular biology tools for ME; Pharmaceuticals and drug discovery approaches (antibiotics, antivirals; anti-parasite compounds); anti-diarrhea treatments; vaccines. Cross-list: BIOE 361, GLHT 361.
Course URL: www.btb.rice.edu

BIOC 368 - CONCEIVING AND MISCONCEIVING THE MONSTROUS IN FICTION AND IN ART, IN MEDICINE AND IN BIOSCIENCE
Short Title: MONSTER
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: However various the forms of life, we draw boundaries between normal, not normal, and monstrous. From the Biosciences to the Arts, our conceptions of the “monstrous” illuminate our identity, perceptions, and fears. Priority for enrollment beyond the cap given to students also enrolled in ARTS 358. Cross-list: HUMA 368.

BIOC 371 - SEMINAR IN CONTEMPORARY BIOLOGICAL AND BIOMEDICAL RESEARCH
Short Title: BIOMEDICAL RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 341 (may be taken concurrently) or BIOC 301 (may be taken concurrently)
Description: This course will offer students a close-up look at an area of contemporary biological and biomedical research in a small-group seminar setting. Each seminar will focus on a different area of research through reading and discussion of recent research articles in that focus area. The faculty discussion leader for each seminar will be drawn from Baylor College of Medicine, UT Health Science Center, MD Anderson Cancer Center, Rice and others. Prereqs may be taken concurrently. Please consult the course website for a complete listing of seminars offered each semester. Please refer to the following link for additional information: http://www.bioc.rice.edu/bioc371. Instructor Permission Required. Recommended Prerequisite(s): Students should check the courses website for additional prerequisites, notes from the instructor, and other information specific to each section. Repeatable for Credit.
BIOC 372 - IMMUNOLOGY
Short Title: IMMUNOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 201
Description: Cellular and molecular basis of innate and adaptive immune function in mammals. Graduate/Undergraduate Equivalency: BIOC 573. Recommended Prerequisite(s): BIOC 301 and BIOC 341. Mutually Exclusive: Credit cannot be earned for BIOC 372 and BIOC 573/BIOS 372.

BIOC 380 - FUNDAMENTAL NEUROSCIENCE SYSTEMS
Short Title: NEUROSYSTEMS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course will provide a broad overview of the brain's neural systems that subserves perception, learning, and behavior. The course will be highly integrative with thematic content including functional organization of the nervous system, neural encoding and decoding, sensory systems, motor systems, and high-level concept processing. Cross-list: NEUR 380, PSYC 380. Recommended Prerequisite(s): PSYC 101.

BIOC 385 - FUNDAMENTALS OF CELLULAR AND MOLECULAR NEUROSCIENCES
Short Title: FUNDAMENTALS OF NEUROSCIENCES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course will provide a broad overview of the brain's neural systems that subserves perception, learning, and behavior. The course will be highly integrative with thematic content including functional organization of the nervous system, neural encoding and decoding, sensory systems, motor systems, and high-level concept processing. Cross-list: NEUR 385. Graduate/Undergraduate Equivalency: BIOC 585. Mutually Exclusive: Credit cannot be earned for BIOC 385 and BIOC 585.

BIOC 390 - TRANSFER CREDIT IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: TRAN CREDIT BIOCHEM&CELL BIO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Transfer
Credit Hours: 3
Course Level: Undergraduate Upper-Level
Description: For transfer of courses which have no current equivalent in the Rice curriculum, but which can be counted as 300 level BIOC lecture courses, in satisfying requirements for majors in Biosciences. Repeatable for Credit.

BIOC 393 - LABORATORY TRANSFER CREDIT IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: LAB TRANSFER CREDIT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Transfer
Credit Hour: 1
Course Level: Undergraduate Upper-Level
Description: For transfer of an advanced laboratory course in the Biochemistry and Cell Biology that has no current equivalent in the Rice curriculum. Any student may receive a maximum of one credit of BIOC 393.

BIOC 401 - UNDERGRADUATE HONORS RESEARCH
Short Title: UNDERGRADUATE HONORS RESEARCH
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: The Biochemistry and Cell Biology Honors Research Program is a suite of courses offering our seniors and advanced juniors the opportunity to perform a two-semester, individual research project in a research laboratory in Biochemistry & Cell Biology. Students having performed BIOS/BIOC 310 research in an off-campus laboratory in the Texas Medical Center will also be eligible to apply to perform honors research in that laboratory. The Honors Research Program courses function as a set and must all be taken in the same academic year. Registration for any of the courses requires a commitment to register for all three. Requires at least 15 hours of laboratory research per week, a proposal (revised from application), monthly reports, and a formal progress report (abstract, aims, progress toward aims, discussion of results, plans for the spring semester). Prerequisites: strong performance in (BIOC 310, or HONS 470/471) and BIOC 211 and either BIOC 301 or BIOC 341. Research professor recommendation required. Application for admission required (BCB Honors Program OwlSpace Resources). Department Permission Required. Repeatable for Credit.

BIOC 402 - UNDERGRADUATE HONORS RESEARCH
Short Title: UNDERGRADUATE HONORS RESEARCH
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 401
Corequisite: BIOC 412
Description: The Biochemistry and Cell Biology Honors Research Program is a suite of courses offering our seniors and advanced juniors the opportunity to perform a two-semester, individual research project in a research laboratory in Biochemistry & Cell Biology. Students having performed BIOS/BIOC 310 research in an off-campus laboratory in the Texas Medical Center will also be eligible to apply to perform honors research in that laboratory. Registration for any of the courses requires a commitment to register for all three. Requires at least 15 hours of laboratory research per week, monthly reports, a thesis (substantial research paper) and a poster presentation at the Rice Undergraduate Research Symposium. Repeatable for Credit.
BIOC 412 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 401
Corequisite: BIOC 402
Description: This companion seminar requires attendance at course meetings and a formal scientific presentation of research performed while enrolled in the Honors Research Program. Repeatable for Credit.

BIOC 415 - EXPERIMENTAL PHYSIOLOGY
Short Title: EXPERIMENTAL PHYSIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 311 or BIOC 385 (may be taken concurrently) or NEUR 385 (may be taken concurrently)) and (BIOC 211 or BIOC 212)
Description: Laboratory studies in membrane, nerve, and muscle physiology, with emphasis on experimental design, data analysis, and data interpretation. BIOC/NEUR 385 may be taken concurrently with BIOC 415.
Course URL: www.ruf.rice.edu/~bioslabs/bios415

BIOC 417 - EXPERIMENTAL CELL AND MOLECULAR NEUROSCIENCE
Short Title: ADV EXPERIMENTAL NEUROSCIENCE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 212 and CAAM 210 and (STAT 305 or STAT 310 or STAT 312) and (BIOC 385 or NEUR 385)
Description: Students will explore the molecular properties of neurons and related cells using standard techniques in the field. Experiments will include manipulating exocytosis, examining protein expression levels in different brain regions of mice, and culturing primary neurons. Lessons will also include a brief lecture/discussion on fundamental principles within cellular and molecular neuroscience.

BIOC 424 - MICROBIOLOGY AND BIOTECHNOLOGY
Short Title: MICROBIOLOGY & BIOTECHNOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 201
Description: Structure and functions of microorganisms with emphasis on their environmental, industrial and medical importance. Graduate/Undergraduate Equivalency: BIOC 524. Recommended Prerequisite(s): BIOC 301 or Instructor Permission. Mutually Exclusive: Credit cannot be earned for BIOC 424 and BIOC 524.

BIOC 425 - PLANT MOLECULAR GENETICS AND DEVELOPMENT
Short Title: PLANT MOLECULAR GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 or BIOC 341
Description: Novel aspects of plant biology and development with emphasis on molecular and genetic mechanisms. Plant responses to the environment and the use of bioengineering and other means to develop new plant products will also be covered. Graduate/Undergraduate Equivalency: BIOC 525. Mutually Exclusive: Credit cannot be earned for BIOC 425 and BIOC 525.

BIOC 442 - MOLECULES, MEMORY AND MODEL ANIMALS: METHODS IN BEHAVIORAL NEUROSCIENCE
Short Title: BEHAVIORAL NEUROSCIENCE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 380 or NEUR 380 or PSYC 380 or BIOC 385 or NEUR 385) and (PSYC 203 or EBIO 321) and (STAT 305 or STAT 310 or STAT 312)
Description: This will be a combined lecture/discussion course on historical and current methods in behavioral neuroscience using primary literature. Topics will include the molecular basis of memory, genetic impacts on cognition, and possible epigenetic influences on behavior. Special emphasis will be placed on discussing different model organism and their benefits/drawbacks in neuroscience research.
BIOC 443 - DEVELOPMENTAL NEUROBIOLOGY
Short Title: NEURODEVELOPMENT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 or BIOC 341 or BIOC 344
Description: An advanced undergraduate and graduate level course, dedicated to analysis and evaluation of scientific inquiry into animal development and neurodevelopment. Textbook based lectures and discussions based on primary scientific literature are used to exemplify and evaluate concepts and methodology. Writing assignments, quizzes, midterm and final exam will be used to evaluate performance. Graduate/Undergraduate Equivalency: BIOC 544. Mutually Exclusive: Credit cannot be earned for BIOC 443 and BIOC 544.

BIOC 445 - ADVANCED MOLECULAR BIOLOGY AND GENETICS
Short Title: ADV MOLECULAR BIOL & GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 or BIOC 344
Description: Molecular and genetic aspects of the regulation of gene expression as seen in simple prokaryotic systems and the model eukaryotic systems used for studies of development. Graduate/Undergraduate Equivalency: BIOC 545. Mutually Exclusive: Credit cannot be earned for BIOC 445 and BIOC 545.

BIOC 447 - EXPERIMENTAL BIOLOGY AND THE FUTURE OF MEDICINE
Short Title: BIOLOGY AND MEDICINE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 or BIOC 344
Description: Current biological methods offer the potential to transform health care. We will examine the biology and methodology of emergent health care technologies such as stem cell therapy and personal genome sequencing to understand their potential to impact human health. Graduate/Undergraduate Equivalency: BIOC 547.

BIOC 449 - ADVANCED CELL AND MOLECULAR NEUROSCIENCE
Short Title: ADV CELL AND MOLECULAR NEURO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 385 or NEUR 385) and BIOC 201 and BIOC 212 and (MATH 102 or MATH 106) and (STAT 305 or STAT 310 or STAT 312)
Description: This course will be an overview of advanced principles and techniques in cell and molecular neuroscience; subjects will include bioelectricity, cellular signaling, and the molecular mechanics of neuronal plasticity. The class will primarily be lecture driven. However, there will be a seminar component – students will review primary scientific literature, discuss it in small groups, and present their findings. Recommended Prerequisite(s): NEUR 380 or BIOC 380 or PSYC 380.

BIOC 450 - VIRUSES AND INFECTIOUS DISEASES
Short Title: VIRUSES & INFECTIOUS DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 or BIOC 341
Description: Animal viruses, especially those relevant to human health, will be discussed. Topics primarily focus on virus structure and the molecular biology of the virus life cycle. Practical issues such as the history of viral diseases, clinical manifestations, laboratory diagnosis, management and prevention will also be discussed. Graduate/Undergraduate Equivalency: BIOC 550. Mutually Exclusive: Credit cannot be earned for BIOC 450 and BIOC 550.

BIOC 455 - COMPUTATIONAL SYNTHETIC BIOLOGY
Short Title: COMP SYNTHETIC BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): MATH 211
Description: Mathematical and computational techniques of cell biology and synthetic biology. Topics include deriving and implementing mathematical and computational models of cellular growth and division, evolution, gene regulation, synthetic gene circuits, enzymatic processing, and stochastic processes in biology. Graduate/Undergraduate Equivalency: BIOC 555. Recommended Prerequisite(s): CAAM 210
BIOC 460 - CANCER BIOLOGY
Short Title: CANCER BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 and BIOC 341
Description: Provides an integrated lecture series summarizing current knowledge in cancer biology and integrating current literature with basic concepts. Topics include: statistics of incidence/survival, types of cancer, pathology, the process of carcinogenesis and sources of carcinogens, genetic and epigenetic mechanisms and consequences, cancer progression, metastasis and current treatment options. Students will learn to use online databases to develop independent strategies for analyzing datasets. There will be several writing assignments and in class oral presentations of research articles. Graduate/Undergraduate Equivalency: BIOC 560. Mutually Exclusive: Credit cannot be earned for BIOC 460 and BIOC 560.

BIOC 464 - EXTRACELLULAR MATRIX
Short Title: EXTRACELLULAR MATRIX
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 341 or BIOC 341
Description: This course will address the biology, organization, mechanics, and turnover of extracellular matrix. There will be an emphasis on cells and cell-matrix interactions, matrix distribution within and design of connective tissues and organs techniques for quantitative analysis of matrix, techniques for measurement and modeling of connective tissue biomechanics, changes with growth and aging and tissue/matrix degradation. Cross-list: BIOC 464. Graduate/Undergraduate Equivalency: BIOC 523. Recommended Prerequisite(s): BIOC 372, BIOC 341. Mutually Exclusive: Credit cannot be earned for BIOC 464 and BIOC 523.

BIOC 470 - COMPUTATION WITH BIOLOGICAL DATA
Short Title: COMPUTATION WITH BIOL DATA
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 301 or BIOC 341 or BIOC 344) and (MATH 102 or MATH 106)
Description: This course will teach programming and analysis techniques essential for modern research in the biological sciences. Students will learn the basics of programming in the MATLAB or Python scripting languages and applications to analyzing biological data. There will be a particular focus on quantitative image and sequence analysis. Graduate/Undergraduate Equivalency: BIOC 570. Mutually Exclusive: Credit cannot be earned for BIOC 470 and BIOC 570.

BIOC 477 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Laboratory, Lecture, Seminar, Independent Study, Lecture/Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Topics and credit hours may vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

BIOC 481 - MOLECULAR BIOPHYSICS I
Short Title: MOLECULAR BIOPHYSICS I
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 or BIOC 352
Description: Focus on principles of common biophysical methods used for study of conformations and dynamics of biological macromolecules and assemblies. Topics cover spectroscopic methods (absorption, fluorescence, circular dichroism, epr, NMR), transport processes, sedimentation, calorimetry, mass spectrometry, crystallography, cryo-electron microscopy, atomic force microscopy, ligand-protein interactions, protein folding, single molecule detection, computer simulations, functional genomics and laboratory evolution. Biological examples will be used to demonstrate merits and complementarity in each of the biophysical methods. Graduate/Undergraduate Equivalency: BIOC 551.

BIOC 482 - STRUCTURAL BIOLOGY
Short Title: STRUCTURAL BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 and (PHYS 101 or PHYS 125) and (PHYS 102 or PHYS 126)
Description: Structural biology plays an important role in defining atomic structures of biomolecules and understanding relationships between structure, dynamics and function in living systems. This course will give an introduction to techniques of determining biomolecular structures, X-ray crystallography, NMR, and cryoelectron microscopy and discuss striking examples of the power of structural biology. Graduate/Undergraduate Equivalency: BIOC 552. Mutually Exclusive: Credit cannot be earned for BIOC 482 and BIOC 552.
BIOC 501 - PHYSICAL BIOLOGY
Short Title: PHYSICAL BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Basic introduction to a biophysical view of living systems, from the subcellular to the multicellular scales. Topics include: biomolecular dynamics, cellular biomechanics, cell motility and cell division, calcium signaling, action potential propagation, and tissue organization. Cross-list: BIOE 502, SSPB 501.

BIOC 523 - EXTRACELLULAR MATRIX
Short Title: EXTRACELLULAR MATRIX
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course will address the biology, organization, mechanics, and turnover of extracellular matrix. There will be an emphasis on cells and cell-matrix interactions, matrix distribution within and design of connective tissues and organs techniques for quantitative analysis of matrix, techniques for measurement and modeling of connective tissue biomechanics, changes with growth and aging and tissue/matrix degradation. Additional projects will be required of graduate level students. Cross-list: BIOC 524. Graduate/Undergraduate Equivalency: BIOC 464. Recommended Prerequisite(s): BIOE 372, BIOC/ BIOE 341. Mutually Exclusive: Credit cannot be earned for BIOC 523 and BIOC 464.

BIOC 524 - MICROBIOLOGY & BIOTECHNOLOGY
Short Title: MICROBIOLOGY & BIOTECHNOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Structure and functions of microorganisms with emphasis on their environmental, industrial and medical importance. Graduate/Undergraduate Equivalency: BIOC 424. Mutually Exclusive: Credit cannot be earned for BIOC 524 and BIOC 424.

BIOC 525 - PLANT MOLECULAR GENETICS AND DEVELOPMENT
Short Title: PLANT MOLECULAR GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Novel aspects of plant biology and development with emphasis on molecular and genetic mechanisms. Plant responses to the environment and the use of bioengineering and other means to develop new plant products will also be covered. Graduate/Undergraduate Equivalency: BIOC 425. Mutually Exclusive: Credit cannot be earned for BIOC 525 and BIOC 425.

BIOC 530 - LAB MODULE IN NMR SPECTROSCOPY AND MOLECULAR MODELING
Short Title: LAB MOD NMR SPECTROSCOPY&MOLEC
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 481 or BIOC 482 (may be taken concurrently) or BIOC 552 (may be taken concurrently) or BIOC 551
Description: The students will learn to set up, acquire, and process one-dimensional and basic two-dimensional NMR experiments. Spectral interpretation (3D molecular modeling of proteins and nucleic acids) for nucleic acids and proteins using homonuclear and heteronuclear data. Enrollment limited to 12, with priority to graduate students. Offered first half of the semester. BIOC 482/552 may be taken concurrently with BIOC 530.

BIOC 532 - LABORATORY MODULE IN OPTICAL SPECTROSCOPY AND KINETICS
Short Title: LAB MOD OPTICAL SPECTROSCOPY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Students learn the principles behind fluorescence, circular dichroism, analytical ultracentrifugation, spectroscopy and rapid kinetics by carrying out experiments with genetically engineered proteins and state-of-the-art equipment. Data will be interpreted and manipulated using curve-fitting and graphics software. Offered second half of the semester. Recommended Prerequisite(s): BIOC 352 or equivalent. Concurrent or previous enrollment in BIOC 481 or BIOC 551.

BIOC 533 - BIOINFORMATICS & COMPUTATIONAL BIOLOGY
Short Title: BIOINFORMATICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 2
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: An introduction to the emerging field of bioinformatics. A series of lectures, combined with hands-on exercises. The topics to be discussed include sequence comparison, structure analysis, phylogenetics, database searching, microarrays and proteomics. Recommended prerequisite(s): BIOC 301 or permission of instructor.
BIOC 534 - EVOLUTION
Short Title: EVOLUTION
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Principles of biological evolution. Topics include natural selection, adaptation, molecular evolution, formation of new species, the fossil record, biogeography, and principles of classification. Instructor Permission Required. Cross-list: EBIO 534. Graduate/Undergraduate Equivalency: BIOC 334. Mutually Exclusive: Credit cannot be earned for BIOC 534 and BIOC 334.

BIOC 535 - PRACTICAL X-RAY CRYSTALLOGRAPHY
Short Title: PRACT X-RAY CRYSTALLOGRAPHY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 552 (may be taken concurrently) or BIOC 482 (may be taken concurrently)
Description: This is an introduction to macromolecular crystallography with emphasis on crystallization methods, data acquisition, processing and molecular model-building. Approaches to solving structures will be discussed, as well as refinement of molecular models. Offered second half of the semester. Prerequisites are concurrent and may be taken the same semester.

BIOC 536 - CELLULAR AND MOLECULAR ANIMAL PHYSIOLOGY
Short Title: CELL & MOL ANIMAL PHYSIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course investigates animal physiology from a cellular and molecular perspective. Using an integrated and comparative approach, students learn how animals maintain homeostasis. Students will read primary literature to explore physiological adaptations for survival in extreme conditions. Graduate/Undergraduate Equivalency: BIOC 335. Mutually Exclusive: Credit cannot be earned for BIOC 536 and BIOC 335.

BIOC 537 - ADVANCED STRUCTURAL BIOLOGY SEMINAR
Short Title: ADV STRUCTURAL BIOLOGY SEMINAR
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: One hour seminar course in theoretical and practical aspects of crystallography, primarily as it applies to macromolecular crystallography. Presentations will be given by instructors and students on advanced topics based on published works or original research. Repeatable for Credit.

BIOC 538 - ADVANCED MOLECULAR BIOLOGY AND GENETICS
Short Title: ADV MOLECULAR BIOL & GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 341 or BIOC 301 or BIOC 344
Description: An advanced undergraduate and graduate level course, dedicated to analysis and evaluation of scientific inquiry into animal development. Textbook based lectures and discussions based on primary scientific literature are used to exemplify and evaluate concepts and methodology. Writing assignments, quizzes, midterm and final exam will be used to evaluate performance. Graduate/Undergraduate Equivalency: BIOC 443. Mutually Exclusive: Credit cannot be earned for BIOC 544 and BIOC 443.

BIOC 540 - METABOLIC ENGINEERING
Short Title: METABOLIC ENGINEERING
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate

BIOC 544 - DEVELOPMENTAL NEUROBIOLOGY
Short Title: NEURODEVELOPMENT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 341 or BIOC 301 or BIOC 344
Description: An advanced undergraduate and graduate level course, dedicated to analysis and evaluation of scientific inquiry into animal development. Textbook based lectures and discussions based on primary scientific literature are used to exemplify and evaluate concepts and methodology. Writing assignments, quizzes, midterm and final exam will be used to evaluate performance. Graduate/Undergraduate Equivalency: BIOC 443. Mutually Exclusive: Credit cannot be earned for BIOC 544 and BIOC 443.

BIOC 545 - ADVANCED MOLECULAR BIOLOGY AND GENETICS
Short Title: ADV MOLECULAR BIOL & GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 341 or BIOC 301 or BIOC 344
Description: An advanced undergraduate and graduate level course, dedicated to analysis and evaluation of scientific inquiry into animal development. Textbook based lectures and discussions based on primary scientific literature are used to exemplify and evaluate concepts and methodology. Writing assignments, quizzes, midterm and final exam will be used to evaluate performance. Graduate/Undergraduate Equivalency: BIOC 443. Mutually Exclusive: Credit cannot be earned for BIOC 544 and BIOC 443.

BIOC 547 - EXPERIMENTAL BIOLOGY AND THE FUTURE OF MEDICINE
Short Title: BIOLOGY AND MEDICINE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Current biological methods offer the potential to transform health care. We will examine the biology and methodology of emergent health care technologies such as stem cell therapy and personal genome sequencing to understand their potential to impact human health. Graduate/Undergraduate Equivalency: BIOC 447. Recommended Prerequisite(s): BIOC 301 or BIOC 341 or BIOC 344.
BIOC 549 - ADVANCED CELL AND MOLECULAR NEUROSCIENCE
Short Title: ADV CELL AND MOLECULAR NEURO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): (BIOC 385 or NEUR 385) and BIOC 201 and BIOC 212 and (MATH 102 or MATH 106) and (STAT 305 or STAT 310 or STAT 312)
Description: This course will be an overview of advanced principles and techniques in cell and molecular neuroscience; subjects will include bioelectricity, cellular signaling, and the molecular mechanics of neuronal plasticity. The class will primarily be lecture driven. However, there will be seminar component – students will review primary scientific literature, discuss it in small groups, and present their findings.

BIOC 550 - VIRUSES AND INFECTIOUS DISEASES
Short Title: VIRUSES & INFECTIOUS DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 301 or BIOC 341
Description: Animal viruses, especially those relevant to human health, will be discussed. Topics primarily focus on virus structure and the molecular biology of the virus life cycle. Practical issues such as the history of viral diseases, clinical manifestations, laboratory diagnosis, management and prevention will also be discussed. Graduate/Undergraduate Equivalency: BIOC 450. Mutually Exclusive: Credit cannot be earned for BIOC 550 and BIOC 450.

BIOC 551 - MOLECULAR BIOPHYSICS
Short Title: MOLECULAR BIOPHYSICS I
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 301 or BIOC 352
Description: Focus on principles of common biophysical methods used for study of conformations and dynamics of biological macromolecules and assemblies. Topics cover spectroscopic methods (absorption, fluorescence, circular dichroism, epr, NMR), transport processes, sedimentation, calorimetry, mass spectrometry, cryo-electron microscopy, atomic force microscopy, ligand-protein interactions, protein folding, single molecule detection, computer simulations, functional genomics and laboratory evolution. Biological examples will be used to demonstrate merits and complementarity in each of the biophysical methods. Graduate/Undergraduate Equivalency: BIOC 481.

BIOC 552 - STRUCTURAL BIOLOGY
Short Title: STRUCTURAL BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Structural biology plays an important role in defining atomic structures of biomolecules and understanding relationships between structure, dynamics and function in living systems. This course will give an introduction to techniques of determining biomolecular structures, X-ray crystallography, NMR, and cryoelectron microscopy and discuss striking examples of the power of structural biology. Graduate/Undergraduate Equivalency: BIOC 482. Recommended prerequisite(s): BIOC 301. Mutually Exclusive: Credit cannot be earned for BIOC 552 and BIOC 482.

BIOC 555 - COMPUTATIONAL SYNTHETIC BIOLOGY
Short Title: COMP SYNTH BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Mathematical and computational techniques of cell biology and synthetic biology. Topics include deriving and implementing mathematical and computational models of cellular growth and division, evolution, gene regulation, synthetic gene circuits, enzymatic processing, and stochastic processes in biology. Graduate/Undergraduate Equivalency: BIOC 455.

BIOC 558 - INTRODUCTION TO GENOME EDITING AND ENGINEERING
Short Title: GENOME EDITING AND ENGINEERING
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course provides an introduction to the recent advances in the genome editing and engineering field. Past and current stages of genome-editing technologies, the fundamental mechanisms of different classes of genome-editing proteins, and cutting-edge strategies for engineering novel genome-editing agents and their applications in synthetic biology and therapeutics. Cross-list: CHBE 558.
BIOC 560 - CANCER BIOLOGY
Short Title: CANCER BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Provides an integrated lecture series summarizing current knowledge in cancer biology and integrating current literature with basic concepts. Topics include: statistics of incidence/survival, types of cancer, pathology, the process of carcinogenesis and sources of carcinogens, genetic and epigenetic mechanisms and consequences, cancer progression, metastasis and current treatment options. Students will learn to use online databases to develop independent strategies for analyzing datasets. There will be several writing assignments and in class oral presentations of research articles. This course requires instructor permission to enroll. Please fill out the special registration form from https://registrar.rice.edu/student/special_registration. All requests will be reviewed and you will be notified of an enrollment decision. Instructor Permission Required. Cross-list: BIOE 578.

BIOC 570 - COMPUTATION WITH BIOLOGICAL DATA
Short Title: COMPUTATION WITH BIOL DATA
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course will teach programming and analysis techniques essential for modern research in the biological sciences. Students will learn the basics of programming in the MATLAB or Python scripting languages and applications to analyzing biological data. There will be a particular focus on quantitative image and sequence analysis. Instructor Permission Required. Graduate/Undergraduate Equivalency: BIOC 460. Mutually Exclusive: Credit cannot be earned for BIOC 560 and BIOC 460.

BIOC 571 - BIOINFORMATICS: SEQUENCE ANALYSIS
Short Title: BIOINFORMATICS: SEQUENCE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Pairwise and multiple sequence alignment, Markov chains and HMMs, Phylogenetic reconstruction, Haplotype inference, Computational models of RNA structure, Gene finding, Genome rearrangements, and comparative genomics. Cross-list: COMP 571.
Course URL: www.cs.rice.edu/~nakhleh/COMP571/

BIOC 572 - BIOINFORMATICS: NETWORK ANALYSIS
Short Title: BIOINFORMATICS: NETWORKS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers computational aspects of biological network analysis, a major theme in the area of systems biology. The course addresses protein-protein interaction networks, signaling, and metabolic networks, and covers issues related to reconstructing, analyzing, and integrating various types of networks. Cross-list: BIOE 564, COMP 572.
Course URL: www.cs.rice.edu/~nakhleh/COMP572/

BIOC 573 - IMMUNOLOGY
Short Title: IMMUNOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 201
Description: Provides an in-depth overview of the cellular and molecular basis of innate and adaptive immune function in mammals. Graduate students will be required to do all the usual assignments associated with the undergraduate section of the course but in addition will write a substantial paper on some aspects of the field that is relevant to their planned careers in biomedical research/biotechnology. Graduate/Undergraduate Equivalency: BIOC 372. Recommended Prerequisite(s): BIOC 301 AND BIOC 341. Mutually Exclusive: Credit cannot be earned for BIOC 573 and BIOC 372/BIOC 372.

BIOC 575 - INTRODUCTION TO RESEARCH
Short Title: INTRODUCTION TO RESEARCH
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers computational aspects of biological network analysis, a major theme in the area of systems biology. The course addresses protein-protein interaction networks, signaling, and metabolic networks, and covers issues related to reconstructing, analyzing, and integrating various types of networks. Cross-list: BIOE 564, COMP 572.
Course URL: www.cs.rice.edu/~nakhleh/COMP572/

BIOC 578 - BIOTECHNOLOGY PRACTICUM
Short Title: BIOTECHNOLOGY PRACTICUM
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Internship/Practicum
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course is part of the NIH Biotechnology Training Program and is limited to program participants. Students will receive exposure and training in cutting edge concepts and technologies. Cross-list: BIOE 578.
BIOC 580 - PROTEIN ENGINEERING
Short Title: PROTEIN ENGINEERING
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Manipulation of gene expression in prokaryotic and eukaryotic cells. Rational design and directed solutions for cell and protein engineering. Selection and screening technologies and process optimization. Synthetic Biology: engineering and application of gene circuits. Molecular biotechnology applications: Diagnosis, Therapeutics and Vaccines. Cross-list: BIOE 580, CHBE 580. Recommended Prerequisite(s): CHBE 310/510 or equivalent is highly recommended.

BIOC 581 - GRADUATE SEMINAR IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: GRAD SEM BIOCHEM & CELL BIOL
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A discussion of selected research topics. Required of all Biochemistry and Cell Biology graduate students. Open only to BCB graduate students. Repeatable for Credit.

BIOC 582 - GRADUATE SEMINAR IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: GRAD SEM/BIOCHEM & CELL BIOL
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A discussion of selected research topics. Required of all Biochemistry and Cell Biology graduate students. Open only to BCB graduate students. Repeatable for Credit.

BIOC 583 - MOLECULAR INTERACTIONS
Short Title: MOLECULAR INTERACTIONS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 4
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: First of two integrated classes taken by first-year graduate students in BCB (to be followed by BIOC 588, Cellular Interactions). Covers advanced topics in biochemistry, ranging from protein and nucleic acid synthesis, folding, function, and engineering to allosteric, dynamics, and degradation with an emphasis on fundamental principles, research methodologies, problem solving, and critical analysis of primary literature. Enrollment limited to BCB graduate students.

BIOC 584 - PROFESSIONAL DEVELOPMENT
Short Title: PROFESSIONAL DEVELOPMENT
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Preparation for professional scientific communication with an emphasis on writing research proposals, describing work in progress, and presenting data in context of research goals.

BIOC 585 - FUNDAMENTALS OF CELLULAR AND MOLECULAR NEUROSCIENCE
Short Title: FUNDAMENTALS OF NEUROSCIENCE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Cellular, molecular, and integrative mechanisms of neural function, including membrane and axon physiology, synaptic transmission and plasticity, sensory transduction and processing. Graduate/Undergraduate Equivalency: BIOC 385. Mutually Exclusive: Credit cannot be earned for BIOC 585 and BIOC 385.

BIOC 587 - RESEARCH DESIGN, PROPOSAL WRITING, AND PROFESSIONAL DEVELOPMENT
Short Title: PROPOSAL WRITING
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Preparation for professional scientific communication with an emphasis on writing research proposals, describing work in progress, and presenting data in context of research goals.

BIOC 588 - CELLULAR INTERACTIONS
Short Title: CELLULAR INTERACTIONS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 4
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Second of two integrated classes taken by first-year graduate students in BCB (following BIOC 583, Molecular Interactions). Covers advanced topics in genetics, cell biology, and developmental biology, focusing on cellular, tissue, and organismal structure and function with an emphasis on fundamental principles, research methodologies, and critical analysis of primary literature.

BIOC 589 - COMPUTATIONAL MOLECULAR BIOENGINEERING/BIOPHYSICS
Short Title: COMP MOLECULAR BIOENG/BIOPHYS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This is a course designed for students in computationally-oriented biomedical and bioengineering majors to introduce the principles and methods used for the simulations and modeling of macromolecules of biological interest. Protein conformation and dynamics are emphasized. Empirical energy function and molecular dynamics calculations, as well as other approaches, are described. Specific biological problems are discussed to illustrate the methodology. Cross-list: BIOE 589. Recommended Prerequisite(s): MATH 212, BIOC 391, BIOE 332.
BIOC 590 - SPECIAL TOPICS IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: SPEC TOPCS BIOCHEM&CELL BIO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Development of specific topic areas at the graduate level. Instructor Permission Required.

BIOC 592 - TOPICS IN QUANTITATIVE BIOLOGY AND BIOMEDICAL INFORMATICS (KECK SEMINAR)
Short Title: TOPICS QUANT BIO & BIOMED INFO
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A discussion of selected research topics in quantitative biology and biomedical informatics. Cross-list: KECK 592. Repeatable for Credit.

BIOC 593 - CURRENT TOPICS IN PLANT BIOLOGY
Short Title: TOPICS IN PLANT BIOLOGY
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Discussion of selected research topics in current plant biology literature. Repeatable for Credit.

BIOC 599 - GRADUATE TEACHING IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: GRADUATE TEACHING IN BIOCHEM
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Independent Study
Credit Hour: 1
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Supervised instruction in teaching biochemistry and cell biology. Repeatable for Credit.

BIOC 611 - RESEARCH SEMINAR IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Discussion of individual research or current topics in particular areas. Intended for students conducting research projects in the lab of the instructor. Repeatable for Credit.

BIOC 643 - CELL MECHANICS, MECHANOTRANSDUCTION AND THE CELL MICROENVIRONMENT
Short Title: MECHANOTRANSDUCTION
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Mechanotransduction is a fundamental process essential for living systems and plays a fundamental role in cell signaling, cancer metastasis and stem cell differentiation. Additionally, fundamental biological processes such as endocytosis cell fusion and cell migration are driven by a coordinated interplay of molecular interactions that drive membrane deformation. This course will survey the current understanding of mechanotransduction and the mechanical properties of cells and their microenvironment, including membrane and cytoskeletal mechanics. Experimental approaches for measuring and manipulating the material properties of cells and their environment; including optical, electrical and magnetic techniques will be covered. A variety of application will be covered, including manipulation in engineering of mechanotransduction pathways to drive cell migration and stem cell differentiation. Instructor Permission Required. Cross-list: BIOE 643, PHYS 643.

BIOC 677 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Lecture, Seminar, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Graduate or Visiting Graduate level students.
Course Level: Graduate
Description: Topics and credit hours vary each semester. Contact department for current semester’s topic(s). Repeatable for Credit.

BIOC 701 - GRADUATE LAB RESEARCH I
Short Title: GRADUATE LAB RESEARCH I
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 2-4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Graduate research in Biochemistry and Cell Biology. Designed for short term laboratory projects for first year graduate students. Recommended prerequisite(s): Graduate standing in Biochemistry and Cell Biology. Repeatable for Credit.

BIOC 702 - GRADUATE LAB RESEARCH II
Short Title: GRADUATE LAB RESEARCH II
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 2-4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Graduate research in Biochemistry and Cell Biology. Designed for short term laboratory projects for first year graduate students. Recommended prerequisite(s): Graduate standing in Biochemistry and Cell Biology. Repeatable for Credit.
BIOC 800 - BIOCHEMISTRY & CELL BIOLOGY GRADUATE RESEARCH

Short Title: BCB GRADUATE RESEARCH
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 1-15
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Repeatable for Credit.