PHYSICS (PHYS)

PHYS 100 - EXPLORING PHYSICS
Short Title: EXPLORING PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Description: Introduction to concepts, methods, debates, and discoveries of physics, with a theme to be chosen from one of many fields of modern physics research. Designed for students interested in understanding science. This includes both science and non-science majors.
Course Level: Undergraduate Lower-Level
Department: Physics and Astronomy

PHYS 101 - MECHANICS (WITH LAB)
Short Title: MECHANICS (WITH LAB)
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 103
Description: A calculus-based introduction to mechanics. Includes classes and lab exercises on kinematics, Newton's Laws, work and energy, conservation laws and rotational motion. Primarily for physical science and engineering students. May receive credit for only one of PHYS 101, 111, 125, AP-Physics-B (Phys 141 and 142) and AP Physics-C MECH. Students must register for PHYS 103.
Course Level: Undergraduate Lower-Level
Department: Physics and Astronomy

PHYS 102 - ELECTRICITY & MAGNETISM (WITH LAB)
Short Title: ELECTRICITY&MAGNETISM W/LAB
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 104
Description: A calculus-based introduction to electricity and magnetism. Includes classes and lab exercises on electric and magnetic fields, Maxwell's equations in integral form, and AC and DC circuits. Primarily for physical science and engineering students. May receive credit for only one of PHYS 102, 112, 126, AP Physics-B (PHYS 141 and 142) and AP Physics-C E&M. Students must also register for PHYS 104.
Course Level: Undergraduate Lower-Level
Department: Physics and Astronomy

PHYS 103 - MECHANICS DISCUSSION
Short Title: MECHANICS DISCUSSION
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 0
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 101
Description: Small group discussion section to extend and reinforce concepts presented in PHYS 101. Students must also register for PHYS 101.
Course Level: Undergraduate Lower-Level
Department: Physics and Astronomy

PHYS 104 - ELECTRICITY AND MAGNETISM DISCUSSION
Short Title: E & M DISCUSSION
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 0
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 102
Description: Small group discussion section to extend and reinforce concepts presented in PHYS 102. Students must also register for PHYS 102.
Course Level: Undergraduate Lower-Level
Department: Physics and Astronomy

PHYS 106 - HONORS MECHANICS (WITH LAB)
Short Title: HONORS MECHANICS (WITH LAB)
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: A more intensive treatment of topics covered in PHYS 101, intended for physical science and engineering students with strong high school backgrounds in physics and particularly calculus. May receive credit for only one of PHYS 101, 111, 125, AP Physics-B (PHYS 141 and 142) and AP Physics-C MECH.
Course Level: Undergraduate Lower-Level
Department: Physics and Astronomy

PHYS 108 - HONORS ELECTRICITY & MAGNETISM (WITH LAB)
Short Title: HONORS E & M (WITH LAB)
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: A more intensive treatment of topics covered in PHYS 102, intended for physical science and engineering students with strong high school backgrounds in physics and particularly calculus. May receive credit for only one of PHYS 102, 112, 126, AP Physics-B (PHYS 141 and 142), and AP Physics-C, E&M.
PHYS 125 - GENERAL PHYSICS (WITH LAB)
Short Title: GENERAL PHYSICS (WITH LAB)
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: A calculus-based survey of mechanics primarily intended for bioscience and premedical students. Includes classes and lab exercises on kinematics, Newton's Laws, work and energy, rotational motion, fluids, oscillations and waves. May receive credit for only one of PHYS 101, 111, 125, AP Physics-B (PHYS 141 and 142), and AP Physics-C, MECH.

PHYS 126 - GENERAL PHYSICS II (WITH LAB)
Short Title: GENERAL PHYSICS II (WITH LAB)
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): PHYS 125 or PHYS 101 or PHYS 111 or PHYS 141
Description: A calculus-based survey of E&M and optics primarily intended for bioscience and premedical students. Includes classes and lab exercises on wave and ray optics, electric field and potential, magnetic fields and induction, and DC circuits. May receive credit for only one of PHYS 102, 112, 126, AP Physics B (PHYS 141 and 142), and AP Physics-C, E&M.

PHYS 141 - CONCEPTS IN PHYSICS I
Short Title: CONCEPTS IN PHYSICS I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): PHYS 142
Description: For AP credit only. May receive credit for only one of PHYS 101, PHYS 111, PHYS 102, 125, AP Physics-B, and AP Physics-C (Mech).

PHYS 142 - CONCEPTS IN PHYSICS II
Short Title: CONCEPTS IN PHYSICS II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: For AP credit only. May receive credit for only one of PHYS 102, PHYS 112, PHYS 126, AP Physics-B, and AP Physics-C (E&M).

PHYS 143 - PHYSICS FOR CITIZENSHIP
Short Title: PHYSICS FOR CITIZENSHIP
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Physics is critical to our understanding of nuclear weapons, radiation, electronics, energy and global warming. The most interesting and important topics in physics, with applications to current events will be presented. Topics covered may include energy and conservation, radioactivity, nuclear physics, the Theory of Relativity, lasers, explosions and quantum physics.

PHYS 144 - THE PHYSICS OF MUSIC AND SOUND
Short Title: THE PHYSICS OF MUSIC AND SOUND
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This course explores our scientific understanding of sound and music by studying the properties of sound and its production by a variety of musical instruments. Additional topics include an analysis of musical scales, the physiology of hearing, and the technology of sound reproduction. For non-science and non-engineering majors.

PHYS 201 - WAVES, LIGHT, AND HEAT
Short Title: WAVES, LIGHT, AND HEAT
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Mathematical descriptions of fundamental topics of classical physics: oscillations, mechanical waves, electromagnetic waves, physical optics and thermodynamics.

PHYS 202 - MODERN PHYSICS
Short Title: MODERN PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141) and (PHYS 102 or PHYS 112 or PHYS 126 or PHYS 142)
Description: An introductory course in modern physics. Topics include special relativity, early quantum theory, quantum mechanics, atomic physics, statistical physics, nuclear and particle physics. The course is descriptive in nature with emphasis on phenomena rather than on calculations.
PHYS 231 - ELEMENTARY PHYSICS LAB
Short Title: ELEMENTARY PHYSICS LAB
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Laboratory on waves, optics and modern physics.

PHYS 238 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Topics and credit hours may vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

PHYS 301 - INTERMEDIATE MECHANICS
Short Title: INTERMEDIATE MECHANICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 201
Description: Classical mechanics and appropriate mathematical methods. Emphasis on problem solving.

PHYS 302 - INTERMEDIATE ELECTRODYNAMICS
Short Title: INTERMEDIATE ELECTRODYNAMICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 201
Description: Classical electrodynamics and appropriate mathematical methods. Emphasis on problem solving.

PHYS 310 - INTRODUCTION TO QUANTUM PHYSICS I
Short Title: INTRO TO QUANTUM PHYSICS I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 202
Description: Fundamentals of quantum mechanics and applications to atomic and molecular structure.

PHYS 312 - INTRODUCTION TO QUANTUM PHYSICS II
Short Title: INTRO TO QUANTUM PHYSICS II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Continuation of PHYS 311.

PHYS 331 - JUNIOR PHYSICS LAB I
Short Title: JUNIOR PHYSICS LAB I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Lab exercises in electronics, noise reduction, statistics and particle counting.

PHYS 332 - JUNIOR PHYSICS LAB II
Short Title: JUNIOR PHYSICS LAB II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Lab exercises illustrating topics in the upper-division physics curriculum.

PHYS 355 - INTRODUCTION TO BIOLOGICAL PHYSICS
Short Title: INTRO TO BIOLOGICAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
PHYS 411 - INTRODUCTION TO NUCLEAR & PARTICLE PHYSICS
Short Title: INTRO NUCLEAR&PARTIC PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 311
Description: Survey of history and current state of nuclear and particle physics. The emphasis is on experimental results and how they led to our current understanding of the strong and electroweak interactions. Some recent advances are discussed in detail. Graduate/Undergraduate Equivalency: PHYS 542. Mutually Exclusive: Cannot register for PHYS 411 if student has credit for PHYS 542.

PHYS 412 - SOLID STATE PHYSICS
Short Title: SOLID STATE PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (PHYS 311 and PHYS 425) or ELEC 361
Description: Introduction to topics in solid state physics, including crystal structure, lattice vibrations, electronic band structure and transport.

PHYS 416 - COMPUTATIONAL PHYSICS
Short Title: COMPUTATIONAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 311
Description: Use of computational techniques to solve selected physics problems. Examine benefits and pitfalls of doing physics by computation.

PHYS 425 - STATISTICAL & THERMAL PHYSICS
Short Title: STATISTICAL & THERMAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 301 and PHYS 311
Description: Includes classical thermodynamics; classical & quantum statistical mechanics; Fermi, Bose, and classical gases; magnetic systems; and phase equilibria.

PHYS 461 - INDEPENDENT RESEARCH
Short Title: INDEPENDENT RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-6
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Mentored research under the supervision of a Physics and Astronomy faculty member. To register, students must provide a research plan approved by the faculty mentor. Instructor Permission Required. Repeatable for Credit.

PHYS 462 - INDEPENDENT RESEARCH
Short Title: INDEPENDENT RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-6
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Mentored research under the supervision of a Physics and Astronomy faculty member. To register, students must provide a research plan approved by the faculty mentor. Instructor Permission Required. Repeatable for Credit.

PHYS 465 - REU RESEARCH IN PHYSICS AND ASTRONOMY
Short Title: REU RESEARCH IN PHYS & ASTR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Repeatable for Credit.

PHYS 477 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Seminar, Lecture, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Topics and credit hours may vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.
PHYS 480 - INTRODUCTION TO PLASMA PHYSICS
Short Title: INTRODUCTION TO PLASMA PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 302
Description: Fundamental processes in cosmic and laboratory plasmas. Basic plasma characteristics, charged particle motion, waves in plasmas, magnetohydrodynamics, kinetic theory. Graduate/Undergraduate Equivalency: PHYS 580. Mutually Exclusive: Cannot register for PHYS 480 if student has credit for PHYS 580.

PHYS 491 - UNDERGRADUATE RESEARCH
Short Title: UNDERGRADUATE RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 2
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 301 and PHYS 302 and PHYS 311
Description: Research projects conducted under supervision of departmentally approved faculty. Open to juniors and seniors majoring in physics and astronomy. May be repeated for credit. PHYS 493/494 must be taken concurrently with PHYS 491/492 when used in partial fulfillment of B.S. degree requirements. Repeatable for Credit.

PHYS 492 - UNDERGRADUATE RESEARCH
Short Title: UNDERGRADUATE RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 2
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 491
Description: Research projects conducted under supervision of departmentally approved faculty culminating in a thesis. Open to juniors and seniors majoring in physics and astronomy. May be repeated for credit. PHYS 493/494 must be taken concurrently with PHYS 491/492 when used in partial fulfillment of B.S. degree requirements. Repeatable for Credit.

PHYS 493 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 301 and PHYS 302 and PHYS 311
Description: Weekly seminar for juniors and seniors in which presentations on research topics and/or topics in the scientific literature will be given. Open to juniors and seniors majoring in physics and astronomy. Repeatable for Credit.

PHYS 494 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 493
Description: Weekly seminar for juniors and seniors in which presentations on research topics and/or topics in the scientific literature will be given. Open to juniors and seniors majoring in physics and astronomy. Repeatable for Credit.

PHYS 501 - PHYSICS OF HAM RADIO FOR TEACHERS
Short Title: PHYSICS OF HAM RADIO FOR TEACHERS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Fundamentals of electromagnetic waves and propagation, the ionosphere and space weather. Basic electronics, antenna design and safety, magnetism. Provides information necessary to pass the 'Technician' level of ham radio license. Non-calculus mathematics. Other topics include: use of GPS, geocaching. Mutually Exclusive: Cannot register for PHYS 501 if student has credit for PHYS 401.
PHYS 510 - MAGNETOSPHERIC PHYSICS
Short Title: MAGNETOSPHERIC PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Plasma physics of the earth's magnetosphere, including interactions of the magnetosphere with the solar wind and the ionosphere. The emphasis is on large-scale phenomena, but small scale (kinetic) physics is discussed in cases where it affects the large-scale phenomena.

PHYS 515 - CLASSICAL DYNAMICS
Short Title: CLASSICAL DYNAMICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Lagrangian and Hamiltonian mechanics.

PHYS 516 - MATHEMATICAL METHODS
Short Title: MATHEMATICAL METHODS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Survey of analytical methods used by research physicists and astronomers. Includes complex variables, ordinary differential equations, infinite series, evaluation of integrals, integral transforms, normal-mode analysis, special functions, partial differential equations, eigenfunctions, Green's functions, and variational calculus.

PHYS 517 - COMPUTATIONAL PHYSICS
Short Title: COMPUTATIONAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Use of computational techniques to solve selected physics problems. Examine benefits and pitfalls of doing physics by computation. Requires completion of project using a low-level programming language. Graduate/Undergraduate Equivalency: PHYS 416. Mutually Exclusive: Cannot register for PHYS 517 if student has credit for PHYS 416.

PHYS 519 - PLASMA KINETIC THEORY
Short Title: PLASMA KINETIC THEORY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Plasma kinetic equations (Klimontovich, Liouville, BBGKY, Balescu-Lenard, Fokker-Planck, Vlasov), Vlasov theory of waves and instabilities, connections to fluid plasma models.

PHYS 521 - QUANTUM MECHANICS I
Short Title: QUANTUM MECHANICS I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Graduate level course on non-relativistic quantum mechanics. Topics include early quantum theory, one-dimensional systems, matrix formulation, quantum dynamics, symmetries and conservation laws, bound states, scattering, spin, and identical particles, perturbation theory.

PHYS 522 - QUANTUM MECHANICS II
Short Title: QUANTUM MECHANICS II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Continuation of PHYS 521.

PHYS 526 - STATISTICAL PHYSICS
Short Title: STATISTICAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Selected topics in statistical mechanics, including phase transitions and transport phenomena.

PHYS 532 - CLASSICAL ELECTRODYNAMICS
Short Title: CLASSICAL ELECTRODYNAMICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Maxwell's equations, wave propagation, special relativity and covariant formulation, charged-particle dynamics, and radiation.

PHYS 533 - NANOSTRUCTURE AND NANOTECHNOLOGY I
Short Title: NANOSTRUCTURE/NANOTECHNOLOGY I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Physics of structures and devices at the nanometer scale. After a review of solid state physics, topics include nanostructured materials, nanoelectronics, and nanomagnetism. Emphasis on relevance of nanophysics to current and future technologies.
PHYS 534 - NANOSTRUCTURE AND NANOTECHNOLOGY II
Short Title: NANOSTRUCT&NANOTECHNOLOGY II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A course to familiarize students with basic experimental techniques that are common in academic and industrial laboratories. Topics include nanomechanics, bionanotechnology, advanced sensors and photonics. Continuation of PHYS 533.

PHYS 535 - CRYSTALLOGRAPHY AND DIFFRACTION
Short Title: CRYSTALLOGRAPHY & DIFFRACTION
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Study of crystals by diffraction techniques, focusing on x-ray, with an overview of electron and neutron diffraction as well as complementary techniques. Provides mathematical foundations and nomenclature for diffraction and related phenomena. Includes basics of crystallographic analysis and surface/point/group symmetry, experiment design (courses, geometry, detectors), and data analysis and interpretation. Required for undergraduate MSNE major. Meets with MSNE 435 (additional work for the graduate version). Cross-list: MSNE 535.

PHYS 537 - METHODS OF EXPERIMENTAL PHYSICS I
Short Title: METHODS EXPERIMENTAL PHYSICS I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A course to familiarize students with basic experimental techniques that are common in academic and industrial laboratories. Topics will include lab safety, mechanical design, LabVIEW(TM) programming, statistics, laboratory electronics, particle detection and vacuum technology. PHYS 537 and PHYS 538 may be taken independently of each other.

PHYS 539 - CHARACTERIZATION AND FABRICATION AT THE NANOSCALE
Short Title: CHARACTER&FABRICATN NANSOCAL
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Introduction to study and creation of nanoscale structures, emphasizing relevant physical principles. Techniques covered include optical, X-ray, electron-based and scanned-probe characterization, as well as patterning, deposition and removal of material.

PHYS 541 - RADIATIVE PROCESSES
Short Title: RADIATIVE PROCESSES
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Radiation processes and their applications to astrophysical phenomena and space science. The course treats radiative transfer, radiation from moving charges, relativistic covariance and kinematics, bremsstrahlung, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms and molecules.

PHYS 542 - INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS
Short Title: INTRO NUCLEAR&PARTIC PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): PHYS 311
Description: Survey of history and current state of nuclear and particle physics with the emphasis on experimental results and how they led to our current understanding of the strong and electroweak interactions. Some recent advances are discussed in detail. Requires completion of a Monte Carlo simulation project. Graduate/Undergraduate Equivalency: PHYS 411. Mutually Exclusive: Cannot register for PHYS 542 if student has credit for PHYS 411.

PHYS 543 - PHYSICS OF QUARKS AND LEPTONS
Short Title: PHYSICS OF QUARKS AND LEPTONS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A continuation of PHYS 542.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Short Title</th>
<th>Department</th>
<th>Grade Mode</th>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Prerequisite(s)</th>
<th>Restrictions</th>
<th>Course URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 551</td>
<td>BIOLOGICAL PHYSICS</td>
<td>BIOPHYS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td>PHYS 425 or PHYS 526 and (PHYS 311 or PHYS 521)</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>http://www.ece.rice.edu/~daniel/569/569files.html</td>
</tr>
<tr>
<td>PHYS 552</td>
<td>TOPICS IN BIOLOGICAL PHYSICS</td>
<td>TOPICS BIOPHYS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 553</td>
<td>INTRODUCTION TO SOLID STATE PHYSICS I</td>
<td>INTRO SOLID STATE PHYSICS I</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 554</td>
<td>INTRODUCTION TO SOLID STATE PHYSICS II</td>
<td>INTRO SOLID STATE PHYSICS II</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 555</td>
<td>QUANTUM PHASE TRANSITIONS</td>
<td>QUANTUM PHASE TRANSITIONS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 556</td>
<td>SURFACE PHYSICS</td>
<td>SURFACE PHYSICS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 557</td>
<td>QUANTUM MATERIALS</td>
<td>QUANTUM MATERIALS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 558</td>
<td>GENERAL RELATIVITY</td>
<td>GENERAL RELATIVITY</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 559</td>
<td>ULTRAFAST OPTICAL PHENOMENA</td>
<td>ULTRAFAST OPTICAL PHENOMENA</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 560</td>
<td>COSMOLOGY</td>
<td>COSMOLOGY</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 561</td>
<td>SURFACE PHYSICS</td>
<td>SURFACE PHYSICS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 562</td>
<td>QUANTUM MATERIALS</td>
<td>QUANTUM MATERIALS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 563</td>
<td>INTRODUCTION TO SOLID STATE PHYSICS I</td>
<td>INTRO SOLID STATE PHYSICS I</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 564</td>
<td>INTRODUCTION TO SOLID STATE PHYSICS II</td>
<td>INTRO SOLID STATE PHYSICS II</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 565</td>
<td>QUANTUM PHASE TRANSITIONS</td>
<td>QUANTUM PHASE TRANSITIONS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 566</td>
<td>SURFACE PHYSICS</td>
<td>SURFACE PHYSICS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 567</td>
<td>QUANTUM MATERIALS</td>
<td>QUANTUM MATERIALS</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 568</td>
<td>GENERAL RELATIVITY</td>
<td>GENERAL RELATIVITY</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 569</td>
<td>ULTRAFAST OPTICAL PHENOMENA</td>
<td>ULTRAFAST OPTICAL PHENOMENA</td>
<td>Physics and Astronomy</td>
<td>Graduate</td>
<td>Lecture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Restrictions**: Enrollment is limited to Graduate level students.
- **Course URL**: www.ece.rice.edu/~daniel/569/569files.html
PHYS 571 - MODERN ATOMIC PHYSICS
Short Title: MODERN ATOMIC PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This is an introductory course at the graduate level. Topics to be discussed include: atomic structure, principles of lasers, fundamental interactions of atoms with electromagnetic radiation, including coherent effects, laser spectroscopy, quantum optics, and laser cooling and trapping of atoms, and Bose-Einstein condensation.

PHYS 572 - FUNDAMENTALS OF QUANTUM OPTICS
Short Title: FUNDAMENTALS OF QUANTUM OPTICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Discussion of quantization and statistical properties of light fields; interaction between atoms and light; non-classical states; basic laser theory; quantum effects of nonlinear optics; introduction to atom optics.

PHYS 580 - INTRODUCTION TO PLASMA PHYSICS
Short Title: INTRODUCTION TO PLASMA PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Fundamental processes in cosmic and laboratory plasmas. Basic plasma characteristics, charged particle motion, waves in plasmas, magnetohydrodynamics, kinetic theory. Includes a substantial computational project related to plasma physics. Graduate/Undergraduate Equivalency: PHYS 480. Mutually Exclusive: Cannot register for PHYS 580 if student has credit for PHYS 480.

PHYS 601 - FRONTIERS IN CONDENSED MATTER PHYSICS
Short Title: FRONTIERS IN CONDENSED MATTER
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This seminar will serve as an introduction to current research topics in modern condensed matter physics. Lectures will be given by experts in condensed matter physics at Rice, Columbia University, and other international locations. Repeatable for Credit.

PHYS 605 - COMPUTATIONAL ELECTRODYNAMICS AND NANOPHOTONICS
Short Title: ELECTRODYNAMICS & NANOPHOTONICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers computational and numerical methods for calculating electromagnetic fields and propagation in complex geometries on the nano and microscale. Methods include the finite difference time domain method, boundary element methods, Greens functions methods, finite element methods, the discrete dipole approximation and relaxation methods. Cross-list: ELEC 605. Repeatable for Credit.

PHYS 610 - BIOLOGICAL AND MOLECULAR SIMULATION
Short Title: METHODS OF MOLECULAR SIMUL
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHBE 611 or BIOC 589 or BIOE 589 or BIOS 589 or CHEM 520 or PHYS 526
Description: Modern simulation techniques for classical atomistic systems. Review of statistical mechanical systems. Monte Carlo and molecular dynamics simulation techniques. Extensions of the basic methods to various ensembles. Applications to simulations of large molecules such as proteins. Advanced techniques for simulation of complex systems, including constraint satisfaction, cluster moves, biased sampling, and random energy models. Cross-list: BIOE 610.

PHYS 622 - QUANTUM FIELD THEORY
Short Title: QUANTUM FIELD THEORY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: An introduction to relativistic quantum field theory. Topics include: quantization of scalar, spinor, and vector fields; Feynman diagrams; gauge theories, including QED and QCD; renormalization; and functional-integral methods.
PHYS 643 - CELL MECHANICS, MECHANOTRANSDUCTION AND THE CELL MICROENVIRONMENT
Short Title: MECHANOTRANSDUCTION
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Mechanotransduction is a fundamental process essential for living systems and plays a fundamental role in cell signaling, cancer metastasis and stem cell differentiation. Additionally, fundamental biological processes such as endocytosis cell fusion and cell migration are driven by a coordinated interplay of molecular interactions that drive membrane deformation. This course will survey the current understanding of mechanotransduction and the mechanical properties of cells and their microenvironment, including membrane and cytoskeletal mechanics. Experimental approaches for measuring and manipulating the material properties of cells and their environment; including optical, electrical and magnetic techniques will be covered. A variety of application will be covered, including manipulation in engineering of mechanotransduction pathways to drive cell migration and stem cell differentiation. Instructor Permission Required. Cross-list: BIOC 643, BIOE 643.

PHYS 663 - CONDENSED MATTER THEORY: APPLICATIONS
Short Title: CONDENSED MATTER THRY:APLICATN
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Applications of techniques developed in PHYS 664.

PHYS 664 - CONDENSED MATTER THEORY: MANY-BODY FORMALISM
Short Title: COND MATTR THRY:MANY BODY FORM
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Formal structure of many-body theory as used in condensed matter physics.

PHYS 665 - THEORETICAL TOPICS IN CONTEMPORARY QUANTUM PHYSICS
Short Title: CONTEMPORARY QUANTUM THEORY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): PHYS 521 and PHYS 664
Description: The course covers advanced mathematical methods and techniques used in contemporary research in theoretical quantum physics. This course builds upon the foundations of many-body theory and focuses on its applications to more advanced problems. It may be useful for students pursuing theoretical research in CM or AMO physics, or anyone interested in modern theoretical developments.

PHYS 677 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Seminar, Lecture, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Graduate or Visiting Graduate level students.
Course Level: Graduate
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

PHYS 700 - TEACHING PRACTICUM
Short Title: TEACHING PRACTICUM
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Internship/Practicum
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Supervised teaching for graduate students. Repeatable for Credit.

PHYS 710 - GRADUATE SEMINAR IN PHYSICS AND ASTRONOMY
Short Title: GRAD SEMINAR IN PHYS & ASTR
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Participation in department colloquia and additional sessions on topics of interest to entering graduate students. Required of all Physics and Astronomy graduate students during their first Fall semester at Rice.

PHYS 800 - GRADUATE RESEARCH
Short Title: GRADUATE RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-15
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Thesis research under the supervision of department faculty. Repeatable for Credit.