BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING (BSCHE) DEGREE

The program leading to the Bachelor of Science in Chemical Engineering (BSChE) is accredited by the Engineering Accreditation Commission of ABET, <u>https://www.abet.org</u>, under the General Criteria and the Chemical, Biochemical, Biomolecular and Similarly Named Engineering Criteria.

Program Learning Outcomes (Student Outcomes) for the BSChE Degree

Upon completing the BSChE degree, students will be able to demonstrate:

- 1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. An ability to communicate effectively with a range of audiences.
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Educational Objectives for the BSChE Degree

Within 3 to 5 years of graduation, graduates with a Bachelor of Science in Chemical Engineering (BSChE) degree are expected to be:

- 1. Graduate students, professionals, and entrepreneurs who are moving towards leadership positions as exemplary members of the global workforce; and
- 2. Professionals who practice their societal, environmental, and ethical responsibilities.

Requirements for the BSChE Degree

For general university requirements, see <u>Graduation Requirements</u> (https://ga.rice.edu/undergraduate-students/academic-policiesprocedures/graduation-requirements/). Students pursuing the BSChE degree must complete:

- A minimum of 95 credit hours to satisfy major requirements.
- A minimum of 127 credit hours to satisfy degree requirements.
- A minimum of 16 courses (48 credit hours) taken at the 300-level or above.

- The requirements for one area of specialization (see below for areas of specialization). When students <u>declare the major (https://ga.rice.edu/undergraduate-students/academic-opportunities/majorsminors-certificates/#text</u>) in Chemical Engineering (associated with the BSChE degree), students must additionally identify and declare one of five areas of specialization, either in:
 - Biomolecular Engineering (p. 2), or
 - Computational Engineering (p. 3), or
 - Energy/Sustainability (p. 3), or
 - Materials/Nanotechnology (p. 3), or
 - <u>Engineering Breadth</u> (p. 4) (Engineering Breadth is an area of specialization comprised of electives from a mix of engineering disciplines).

Because of the common core requirements, it is possible for students to change their area of specialization at any time, even after initially declaring the major. To do so, please contact the <u>Office of the Registrar</u> (registrar@rice.edu).

The courses listed below satisfy the requirements for this major. In certain instances, courses not on this official list may be substituted upon approval of the major's academic advisor, or where applicable, the department's Director of Undergraduate Studies. (Course substitutions must be formally applied and entered into Degree Works by the major's <u>Official Certifier (https://registrar.rice.edu/facstaff/degreeworks/officialcertifier/</u>).) Students and their academic advisors should identify and clearly document the courses to be taken.

Summary

Code	Title	Credit Hours
Total Credit H Engineering	ours Required for the Major in Chemical	95
Total Credit H	ours Required for the BSChE Degree	127

Degree Requirements

Code	Title	Credit
		Hours

Core Requirements		
Chemistry		
CHEM 121	GENERAL CHEMISTRY I	3
or CHEM 111	AP/OTH CREDIT IN GENERAL CHEMISTRY I	
CHEM 123	GENERAL CHEMISTRY LABORATORY I	1
or CHEM 113	AP/OTH CREDIT IN GENERAL CHEMISTRY LAB I	
CHEM 122	GENERAL CHEMISTRY II	3
or CHEM 112	AP/OTH CREDIT IN GENERAL CHEMISTRY II	
CHEM 124	GENERAL CHEMISTRY LABORATORY II	1
or CHEM 114	AP/OTH CREDIT IN GENERAL CHEMISTRY LAB II	
CHEM 211 & CHEM 213	ORGANIC CHEMISTRY I and ORGANIC CHEMISTRY DISCUSSION I	3
CHEM 301	PHYSICAL CHEMISTRY I	3
Mathematics and Cor Operations Research	nputational Applied Mathematics and	
MATH 101	SINGLE VARIABLE CALCULUS I	3
or MATH 105	AP/OTH CREDIT IN CALCULUS I	
MATH 102	SINGLE VARIABLE CALCULUS II	3
or MATH 106	AP/OTH CREDIT IN CALCULUS II	

MATH 211	ORDINARY DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA	3	<u>Universit</u> undergra
MATH 212	MULTIVARIABLE CALCULUS ¹	3	graduatio
CMOR 220	INTRODUCTION TO ENGINEERING COMPUTATION	3	Total Cre
Physics			Footnot
Select 1 from the follo	owing: ²	4	* Note
PHYS 101	MECHANICS (WITH LAB)		comp and I
& PHYS 103	and MECHANICS DISCUSSION		distri
PHYS 111	HONORS MECHANICS (WITH LAB)		such
Select 1 from the follo	owing: ³	4	the s
PHYS 102 & PHYS 104	ELECTRICITY & MAGNETISM (WITH LAB) and ELECTRICITY AND MAGNETISM DISCUSSION		<u>Addit</u> gene (hour requi
PHYS 112	HONORS ELECTRICITY & MAGNETISM (WITH LAB)		¹ MAT ² The 0
Chemical and Biomo	blecular Engineering Core Courses		deter
CHBE 243	CHEMICAL ENGINEERING LAB I	2	/ is n
CHBE 301	CHEMICAL ENGINEERING FUNDAMENTALS	3	³ The C
CHBE 305	APPLIED MATHEMATICS AND NUMERICAL METHODS FOR CHEMICAL ENGINEERS II	3	deter // is n Engir
CHBE 310	FUNDAMENTALS OF BIOMOLECULAR ENGINEERING	3	Areas of Students
CHBE 344	CHEMICAL ENGINEERING LAB II	2	following
CHBE 350	PROCESS SAFETY IN CHEMICAL ENGINEERING	1	minimum one of th
CHBE 390	CHEMICAL KINETICS AND REACTOR DESIGN	3	Please N satisfy th
CHBE 401	TRANSPORT PHENOMENA I	3	the list m
CHBE 402	TRANSPORT PHENOMENA II	3	and their
CHBE 403	DESIGN FUNDAMENTALS	4	courses 1
CHBE 404	CHEMICAL ENGINEERING DESIGN	4	Area of S
CHBE 410	APPLIED BIOMOLECULAR ENGINEERING	3	To fulfill t Biomolec
CHBE 411	THERMODYNAMICS I	3	• 1 cou
CHBE 412	THERMODYNAMICS II	3	Requ
CHBE 443	CHEMICAL ENGINEERING LAB III	3	• 3 cou
CHBE 470	PROCESS DYNAMICS AND CONTROL	3	Requ
Area of Specialization	on		Cada
Select 1 from the follo Specialization below)	owing Areas of Specialization (see Areas of :	12	Code
Biomolecular Eng	ineering		Core Rec
Computational Er	ngineering		CHBE 41
Energy/Sustainat	bility		
Materials/Nanote	chnology		Elective
Engineering Breadth			Select 3 d
Total Credit Hours R	equired for the Major in Chemical	95	BIOS
Engineering	*	-	BIOS
Additional Credit Ho	urs to Complete Degree Requirements	I	BIOE

Total Credit Hours	127
graduation-requirements/) *	
undergraduate-students/academic-policies-procedures/	
University Graduation Requirements (https://ga.rice.edu/	31

Footnotes and Additional Information

- * Note: <u>University Graduation Requirements</u> include 31 credit hours, comprised of Distribution Requirements (Groups I, II, and III), FWIS, and LPAP coursework. In some instances, courses satisfying FWIS or distribution requirements may additionally meet other requirements, such as the Analyzing Diversity (AD) requirement, or some of the student's declared major, minor, or certificate requirements. <u>Additional Credit Hours to Complete Degree Requirements</u> include general electives, coursework completed as upper-level, residency (hours taken at Rice), and/or any other additional academic program requirements.
- MATH 221 and MATH 222 may substitute for MATH 212.
- The Chemical and Biomolecular Engineering department has determined that credit awarded for PHYS 141 CONCEPTS IN PHYSICS / is not eligible for meeting the requirements of the Chemical Engineering major.
- The Chemical and Biomolecular Engineering department has determined that credit awarded for PHYS 142 CONCEPTS IN PHYSICS II is not eligible for meeting the requirements of the Chemical Engineering major.

Areas of Specialization

Students must complete the requirements as listed for one of the following areas of specialization for the BSChE degree program. A minimum of 4 courses (minimum of 12 credit hours) must be taken from one of the areas of specialization as listed below.

Please Note: The following list of approved courses can be used to satisfy the requirements of the area of specialization. Courses not on the list may be taken upon approval of the academic advisor. Students and their academic advisors should identify and clearly document the courses to be taken.

Area of Specialization: Biomolecular Engineering

To fulfill the BSChE degree requirements, students pursuing the Biomolecular area of specialization must complete:

- 1 course (3 credit hours) from the area of specialization Core Requirement
- 3 courses (9 credit hours) from the area of specialization Elective Requirements

Code	Title	Credit Hours
Core Requirement	t	
CHBE 415	SEPARATION TECHNOLOGIES FOR CHEMICAL AND BIOMOLECULAR PROCESSES	3
Elective Requirem	nents	
Select 3 courses fr	rom the following:	9
BIOS 201	INTRODUCTORY BIOLOGY I	
BIOS 301	BIOCHEMISTRY I	
BIOE 321	CELLULAR ENGINEERING	
BIOE 330	BIOREACTION ENGINEERING	
BIOE 370	BIOMATERIALS	

BIOE 372	BIOMECHANICS	
BIOE 420 / CHBE 420	TRANSPORT PHENOMENA IN BIOENGINEERING	
BIOE 422	GENE THERAPY	
BIOE 464	EXTRACELLULAR MATRIX	
BIOE 508 / SSPB 503	SYNTHETIC BIOLOGY	
BIOE 620 / CHBE 620	TISSUE ENGINEERING	
Total Credit Hours		12
Area of Specialization To fulfill the BSChE of Computational Engin • 1 course (3 credi Requirement • 3 courses (9 cred Bequirements	n: Computational Engineering legree requirements, students pursuing the neering area of specialization must complete: t hours) from the area of specialization Core lit hours) from the area of specialization Elect	ive
Code	Title	Credit Hours
Core Requirement		
CHBE 415	SEPARATION TECHNOLOGIES FOR CHEMICAL AND BIOMOLECULAR PROCESSES	3
Elective Requiremen	ts	
Select 3 courses from	the following:	9
CMOR 302	MATRIX ANALYSIS	
CMOR 360	INTRODUCTION TO OPERATIONS RESEARCH AND OPTIMIZATION	
CMOR 410	MODELING MATHEMATICAL PHYSICS	
CMOR 415 / ELEC 488 / NEUR 415	THEORETICAL NEUROSCIENCE: FROM CELLS TO LEARNING SYSTEMS	
CMOR 416 / ELEC 489 / NEUR 416	NEURAL COMPUTATION	
CMOR 430	ITERATIVE METHODS FOR SYSTEMS OF EQUATIONS AND UNCONSTRAINED OPTIMIZATION	
CMOR 435 / MATH 435	DYNAMICAL SYSTEMS	
CMOR 441	LINEAR AND INTEGER PROGRAMMING	
CMOR 518	APPLICATIONS IN COMPUTATIONAL MATHEMATICS	
Total Credit Hours		12

Total Credit Hours

Area of Specialization: Energy/Sustainability

To fulfill the BSChE degree requirements, students pursuing the Energy/ Sustainability area of specialization must complete:

- · 1 course (3 credit hours) from the Core Requirement
- · 3 courses (9 credit hours) from the area of specialization Elective Requirements

Code	Title	Credit Hours
Core Requirement		
CHBE 415	SEPARATION TECHNOLOGIES FOR CHEMICAL AND BIOMOLECULAR PROCESSES	3
Elective Requirement	s	
Select 3 courses from	the following:	9
CEVE 302 / ENGI 302	SUSTAINABLE DESIGN	
CEVE 307 / ENST 307 / EEPS 307	ENERGY AND THE ENVIRONMENT	
CEVE 310	PRINCIPLES OF ENVIRONMENTAL ENGINEERING	
CEVE 314 / BIOE 365 / GLHT 314	SUSTAINABLE WATER PURIFICATION FOR THE DEVELOPING WORLD	
CEVE 401	CHEMISTRY FOR ENVIRONMENTAL ENGINEERING AND SCIENCE	
CEVE 434	FATE AND TRANSPORT OF CONTAMINANTS IN THE ENVIRONMENT	
CEVE 484 / STAT 484	ENVIRONMENTAL RISK ASSESSMENT & HUMAN HEALTH	
CEVE 518	ENVIRONMENTAL HYDROGEOLOGY	
CEVE 535	PHYSICAL CHEMICAL PROCESSES FOR WATER QUALITY CONTROL	
CHBE 405	TECHNOECONOMIC ANALYSIS AND ENGINEERING DECISION TOOLS	
CHBE 468	INDUSTRIAL CHEMICAL PROCESSES AND THE ENERGY TRANSITION	
CHBE 570	INDUSTRIAL CATALYSIS AND PETROCHEMICAL PROCESSES	
EEPS 448	EXPLORATION GEOPHYSICS	
EEPS 465	ROCK DEFORMATION AND RHEOLOGY	
EEPS 484	DECISION MAKING AND ECONOMICS IN THE ENERGY INDUSTRY	
EEPS 486	PETROLEUM INDUSTRY ECONOMICS AND MANAGEMENT	
Total Credit Hours		12

Area of Specialization: Materials/Nanotechnology

To fulfill the BSChE degree requirements, students pursuing the Materials/Nanotechnology area of specialization must complete:

- 1 course (3 credit hours) from the area of specialization Core Requirement
- 3 courses (9 credit hours) from the area of specialization Elective Requirements

Code Core Requirement	Title	Credit Hours
CHBE 415	SEPARATION TECHNOLOGIES FOR CHEMICAL AND BIOMOLECULAR PROCESSES	3

Elective Requirements

Select 3 courses from the following:		9	
BIOE 431	BIOMATER	RIALS APPLICATIONS	
CHBE 594 / MSNE 594	PROPERTI	IES OF POLYMERS	
MSNE 211	INTRODUC SCIENCE F	CTION TO MATERIALS FOR ENGINEERS	
MSNE 302	MATERIAL NANOMAN	LS PROCESSING AND	
MSNE 401	THERMOD SCIENCE	DYNAMICS IN MATERIALS	
MSNE 402	MECH PRO	OPERTIES OF MATERIALS	
MSNE 406	PHYSICAL	PROPERTIES OF SOLIDS	
MSNE 411	MATERIAL FROM NAI	S CHARACTERIZATION	
MSNE 415	CERAMICS	S AND GLASSES	
MSNE 433	COMPUTA MODELING	TIONAL MATERIALS G	
MSNE 435	CRYSTALL	OGRAPHY & DIFFRACTION	
MSNE 523	PROPERTI OF COMPO	IES, SYNTHESIS AND DESIGN DSITE MATERIALS	
Total Credit H	ours		12

Total Credit Hours

Area of Specialization: Engineering Breadth

To fulfill the BSChE degree requirements, students pursuing the Engineering Breadth area of specialization must complete:

- · 1 course (3 credit hours) from the area of specialization Core Requirement
- · 3 courses (9 credit hours) from the area of specialization Elective Requirements

Code	Title	Credit Hours
Core Requirement		
CHBE 415	SEPARATION TECHNOLOGIES FOR CHEMICAL AND BIOMOLECULAR PROCESSES	3
Elective Requireme	nts	
Select 3 courses from	m at least 3 categories below: ¹	9
Basic Science		
BIOS 201	INTRODUCTORY BIOLOGY I	
CHEM 330	ANALYTICAL CHEMISTRY	
CHEM 360	INORGANIC CHEMISTRY	
EEPS 334	THE EARTH LABORATORY	
EEPS 340	GLOBAL BIOGEOCHEMICAL CYCLES	
PHYS 202	MODERN PHYSICS	
Environmental Engi	neering Courses	
CEVE 310	PRINCIPLES OF ENVIRONMENTAL ENGINEERING	
CEVE 311 / MECH 311	MECHANICS OF SOLIDS AND STRUCTURES	
CEVE 434	FATE AND TRANSPORT OF CONTAMINANTS IN THE ENVIRONMENT	
Materials Science E	Engineering Courses	

Footnotes and Additional Information

A maximum of 3 credit hours for CHBE 495. CHBE 498. or CHBE 499 may replace 3 credit hours of any of the discipline electives above, but not the Core Requirement.

Policies for the BSChE Degree Program Restrictions and Exclusions

Students pursuing the BSChE degree should be aware of the following program restriction:

· As noted in Majors, Minors, and Certificates (https://ga.rice.edu/ undergraduate-students/academic-opportunities/majors-minorscertificates/), under Declaring Majors, Minors and Certificates, students may not obtain both a BA and a BS in the same major. Students pursuing the Bachelor of Science in Chemical Engineering (BSChE) Degree may not additionally pursue the BA Degree with a Major in Chemical Engineering.

Transfer Credit

For Rice University's policy regarding transfer credit, see Transfer Credit (https://ga.rice.edu/undergraduate-students/academic-policiesprocedures/transfer-credit/). Some departments and programs have additional restrictions on transfer credit. Requests for transfer credit must be approved for Rice equivalency by the designated transfer credit advisor for the appropriate academic department offering the Rice equivalent course (corresponding to the subject code of the course content). The Office of Academic Advising maintains the university's official list of transfer credit advisors (https://oaa.rice.edu/advisingnetwork/transfer-credit-advisors/) on their website: https://oaa.rice.edu. Students are encouraged to meet with the applicable transfer credit

advisor as well as their academic program director when considering transfer credit possibilities.

Additional Information

For additional information, please see the Chemical and Biomolecular Engineering website: <u>https://chbe.rice.edu/</u>.

Opportunities for the BSChE Degree Academic Honors

The university recognizes academic excellence achieved over an undergraduate's academic history at Rice. For information on university honors, please see Latin Honors (https://ga.rice.edu/undergraduate-students/honors-distinctions/university/) (summa cum laude, magna cum laude, and cum laude) and Distinction in Research and Creative Work (https://ga.rice.edu/undergraduate-students/honors-distinctions/university/). Some departments have department-specific Honors awards or designations.

Fifth-Year Master's Degree Option for Rice Undergraduate Students

In certain situations and with some terminal master's degree programs, Rice students have an option to pursue a master's degree by adding an additional fifth year to their four years of undergraduate studies.

Advanced Rice undergraduate students in good academic standing typically apply to the master's degree program during their junior or senior year. Upon acceptance, depending on course load, financial aid status, and other variables, they may then start taking some required courses of the master's degree program. A plan of study will need to be approved by the student's undergraduate major advisor and the master's degree program director.

As part of this option and opportunity, Rice undergraduate students:

- must complete the requirements for a bachelor's degree and the master's degree independently of each other (i.e. no course may be counted toward the fulfillment of both degrees).
- should be aware there could be financial aid implications if the conversion of undergraduate coursework to that of graduate level reduces their earned undergraduate credit for any semester below that of full-time status (12 credit hours).
- more information on this *Undergraduate Graduate Concurrent Enrollment* opportunity, including specific information on the registration process can be found <u>here (https://ga.rice.edu/</u> <u>undergraduate-students/academic-opportunities/undergraduategraduate-concurrent-enrollment/</u>).

Rice undergraduate students completing studies in science and engineering may have the option to pursue the Master of Chemical Engineering (MChE) degree. For additional information, students should contact their undergraduate major advisor and the MChE chair of the department graduate studies committee.

Additional Information

For additional information, please see the Chemical and Biomolecular Engineering website: <u>https://chbe.rice.edu/</u>.