BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING (BSChE) DEGREE AND A MAJOR CONCENTRATION IN BIOTECHNOLOGY AND BIOENGINEERING

The program leading to the BSChE degree is accredited by the Engineering Accreditation Commission (EAC) of ABET, https://www.abet.org.

Program Learning Outcomes (Student Outcomes) for the BSChE Degree

Upon completing the BSChE degree, students will be able to demonstrate:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. an ability to communicate effectively with a range of audiences.
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Educational Objectives for the BSChE Degree

Within 3-5 years of graduation, graduates with a Bachelor of Science in Chemical Engineering (BSChE) degree are expected to be:

1. Graduate students, professionals, and entrepreneurs who are moving towards leadership positions as exemplary members of the global workforce; and
2. Professionals who practice their societal, environmental, and ethical responsibilities.

Requirements for the BSChE Degree

For general university requirements, see Graduation Requirements (ga.rice.edu/undergraduate-students/academic-policies-procedures/graduation-requirements). Students pursuing the BSChE degree must complete:

- A minimum of 97 credit hours to satisfy major requirements.
- A minimum of 132 credit hours to satisfy degree requirements.
- A minimum of 18 courses (53 credit hours), depending on major concentration declared, taken at the 300-level or above.
- The requirements of a major concentration. When students declare the major (ga.rice.edu/undergraduate-students/academic-opportunities/majors-minors-certificates/#text) in Chemical Engineering, students must additionally identify and declare one of the major concentrations, either in:
 - Biotechnology and Bioengineering (p. 2), or
 - Computational Engineering (ga.rice.edu/programs-study/departments-programs/engineering/chemical-biomolecular-engineering/chemical-bsche-concentration-computational/#Computational_Engineering), or
 - Environmental Engineering (ga.rice.edu/programs-study/departments-programs/engineering/chemical-biomolecular-engineering/chemical-bsche-concentration-environmental/#Environmental_Engineering), or
 - Materials Science and Engineering (ga.rice.edu/programs-study/departments-programs/engineering/chemical-biomolecular-engineering/chemical-bsche-concentration-materials-science/#Materials_Science), or
 - Sustainability and Energy Engineering (ga.rice.edu/programs-study/departments-programs/engineering/chemical-biomolecular-engineering/chemical-bsche-concentration-sustainability-energy/#Sustainability_Energy), or
 - Engineering Breadth (ga.rice.edu/programs-study/departments-programs/engineering/chemical-biomolecular-engineering/chemical-bsche-concentration-breadth/#Engineering_Breadth) (Engineering Breadth is a major concentration comprised of electives from a mix of engineering disciplines).

Because of the common core requirements, it is possible for students to change their major concentration at any time, even after initially declaring the major. To do so, please contact the Office of the Registrar (registrar@rice.edu).

The courses listed below satisfy the requirements for this major. In certain instances, courses not on this official list may be substituted upon approval of the major’s academic advisor, or where applicable, the department’s Director of Undergraduate Studies. (Course substitutions must be formally applied and entered into Degree Works by the major’s Official Certifier (https://registrar.rice.edu/facstaff/degreeworks/officialcertified).) Students and their academic advisors should identify and clearly document the courses to be taken.

Summary

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Credit Hours Required for the Major in Chemical Engineering</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours Required for the BSChE Degree</td>
<td>132</td>
</tr>
</tbody>
</table>
Degree Requirements

Core Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 121 & CHEM 123</td>
<td>GENERAL CHEMISTRY I and GENERAL CHEMISTRY LABORATORY I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 122 & CHEM 124</td>
<td>GENERAL CHEMISTRY II and GENERAL CHEMISTRY LABORATORY II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 211 & CHEM 213</td>
<td>ORGANIC CHEMISTRY I and ORGANIC CHEMISTRY DISCUSSION</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 217 or CHEM 215</td>
<td>ORGANIC LABORATORY FOR CHEMICAL ENGINEERS</td>
<td>1</td>
</tr>
<tr>
<td>CHBE 301</td>
<td>CHEMICAL ENGINEERING FUNDAMENTALS</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 303</td>
<td>COMPUTER PROGRAMMING IN CHEMICAL ENGINEERING</td>
<td>2</td>
</tr>
<tr>
<td>CHBE 305</td>
<td>COMPUTATIONAL METHODS IN CHEMICAL ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 310</td>
<td>FUNDAMENTALS OF BIOMOLECULAR ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 343</td>
<td>CHEMICAL ENGINEERING LAB I</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 350</td>
<td>PROCESS SAFETY IN CHEMICAL ENGINEERING</td>
<td>1</td>
</tr>
<tr>
<td>CHBE 390</td>
<td>CHEMICAL KINETICS AND REACTOR DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 401</td>
<td>TRANSPORT PHENOMENA I</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 402</td>
<td>TRANSPORT PHENOMENA II</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 403</td>
<td>DESIGN FUNDAMENTALS</td>
<td>4</td>
</tr>
<tr>
<td>CHBE 404</td>
<td>CHEMICAL ENGINEERING DESIGN</td>
<td>4</td>
</tr>
<tr>
<td>CHBE 411</td>
<td>THERMODYNAMICS I</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 412</td>
<td>THERMODYNAMICS II</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 443</td>
<td>CHEMICAL ENGINEERING LAB II</td>
<td>3</td>
</tr>
<tr>
<td>CHBE 470</td>
<td>PROCESS DYNAMICS AND CONTROL</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemistry

Select 2 from the following:

- CHEM 212 & CHEM 214 | ORGANIC CHEMISTRY II and ORGANIC CHEM DISCUSSION II | 6 |
- CHEM 301 | PHYSICAL CHEMISTRY I | 3 |
- CHEM 302 | PHYSICAL CHEMISTRY II | 3 |

Chemical and Biomolecular Engineering Core Courses

- CHBE 301 | CHEMICAL ENGINEERING FUNDAMENTALS | 3 |
- CHBE 303 | COMPUTER PROGRAMMING IN CHEMICAL ENGINEERING | 2 |
- CHBE 305 | COMPUTATIONAL METHODS IN CHEMICAL ENGINEERING | 3 |
- CHBE 310 | FUNDAMENTALS OF BIOMOLECULAR ENGINEERING | 3 |
- CHBE 343 | CHEMICAL ENGINEERING LAB I | 3 |
- CHBE 350 | PROCESS SAFETY IN CHEMICAL ENGINEERING | 1 |
- CHBE 390 | CHEMICAL KINETICS AND REACTOR DESIGN | 3 |
- CHBE 401 | TRANSPORT PHENOMENA I | 3 |
- CHBE 402 | TRANSPORT PHENOMENA II | 3 |
- CHBE 403 | DESIGN FUNDAMENTALS | 4 |
- CHBE 404 | CHEMICAL ENGINEERING DESIGN | 4 |
- CHBE 411 | THERMODYNAMICS I | 3 |
- CHBE 412 | THERMODYNAMICS II | 3 |
- CHBE 443 | CHEMICAL ENGINEERING LAB II | 3 |
- CHBE 470 | PROCESS DYNAMICS AND CONTROL | 3 |

Mathematics

Select 1 from the following:

- MATH 101 or MATH 105 | SINGLE VARIABLE CALCULUS I or AP/OTH CREDIT IN CALCULUS I | 3 |
- MATH 102 or MATH 106 | SINGLE VARIABLE CALCULUS II or AP/OTH CREDIT IN CALCULUS II | 3 |
- MATH 211 | ORDINARY DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA | 3 |
- MATH 212 | MULTIVARIABLE CALCULUS | 3 |
- CAAM 336 | DIFFERENTIAL EQUATIONS IN SCIENCE AND ENGINEERING | 3 |

Physics

Select 1 from the following:

- PHYS 101 & PHYS 103 | MECHANICS (WITH LAB) and MECHANICS DISCUSSION | 4 |
- PHYS 111 | HONORS MECHANICS (WITH LAB) | 3 |
- PHYS 102 & PHYS 104 | ELECTRICITY & MAGNETISM (WITH LAB) and ELECTRICITY AND MAGNETISM DISCUSSION | 4 |
- PHYS 112 | HONORS ELECTRICITY & MAGNETISM (WITH LAB) | 3 |

Elective Requirements

Select 3 courses from the following:

- BIOC 301 | BIOCHEMISTRY I | 3 |

Major Concentration

Select 1 from the following Major Concentrations (see below for Major Concentration requirements):

- Biotechnology and Bioengineering
- Computational Engineering
- Environmental Engineering
- Materials Science and Engineering
- Sustainability and Energy Engineering
- Engineering Breadth

Total Credit Hours Required for the Major in Chemical Engineering

97

University Graduation Requirements

ga.rice.edu/undergraduate-students/academic-policies-procedures/graduation-requirements

35

Footnotes and Additional Information

* Includes coursework completed as distribution credit, FWIS, LPAP, upper-level, residency (hours taken at Rice), 60 hours outside of the major (if applicable), and any additional academic program requirements. The "hours outside of the major" requirement may include all of the above university requirements.

1 Notes regarding the Chemistry course requirements: CHEM 121 and CHEM 123 can be satisfied by completing CHEM 151 and CHEM 153. CHEM 122 and CHEM 124 can be satisfied by completing CHEM 152 and CHEM 154. For students planning advanced studies in medicine or biotechnology, CHEM 217 can be satisfied by completing CHEM 215.

2 MATH 221 and MATH 222 may substitute for MATH 212.

Major Concentration: Biotechnology and Bioengineering

To fulfill the remaining requirements for the major in Chemical Engineering with a major concentration in Biotechnology and Bioengineering, students must complete a total of 12 credit hours as listed below.

Please Note: The following list of approved courses can be used to satisfy the requirements of the major concentration. Courses not on the list may be taken upon approval of the academic advisor. Students and their academic advisors should identify and clearly document the courses to be taken.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 201</td>
<td>INTRODUCTORY BIOLOGY</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Requirements

Select 3 courses from the following:

- BIOC 301 | BIOCHEMISTRY I | 3 |
Bachelor of Science in Chemical Engineering (BSChE) Degree and a Major Concentration in Biotechnology and Bioengineering

Opportunities for the BSChE Degree with a Major Concentration in Biotechnology and Bioengineering

Academic Honors
The university recognizes academic excellence achieved over an undergraduate's academic history at Rice. For information on university honors, please see Latin Honors (ga.rice.edu/undergraduate-students/honors-distinctions/university) (summa cum laude, magna cum laude, and cum laude) and Distinction in Research and Creative Work (ga.rice.edu/undergraduate-students/honors-distinctions/university). Some departments have department-specific Honors awards or designations.

Fifth-Year Master's Degree Option for Rice Undergraduate Students
Rice students have an option to pursue the Master of Chemical Engineering (MChE) degree by adding an additional fifth year to their four undergraduate years of science and engineering studies.

Advanced Rice undergraduate students in good academic standing may apply to the MChE degree program during their junior or senior year. Upon acceptance, depending on course load, financial aid status, and other variables, they may then start taking some required courses of the master’s degree program. A plan of study will need to be approved by the student’s undergraduate advisor and the (MChE) chair of the department graduate studies committee.

As part of this option and opportunity, Rice undergraduate students:

• must complete the requirements for a bachelor's degree and the master's degree independently of each other (i.e. no course may be counted toward the fulfillment of both degrees).
• should be aware there could be financial aid implications if the conversion of undergraduate coursework to that of graduate level reduces their earned undergraduate credit for any semester below that of full-time status (12 credit hours).
• more information on this Undergraduate - Graduate Concurrent Enrollment opportunity, including specific information on the registration process can be found here (ga.rice.edu/undergraduate-students/academic-opportunities/undergraduate-graduate-concurrent-enrollment).

Additional Information
For additional information, please see the Chemical and Biomolecular Engineering website: https://chbe.rice.edu/