Civil and Environmental Engineering (CEE) is a broad and diverse field of study that offers students an education with several degree options. The most flexible degree options are at the bachelor’s level, where students can pursue either the Bachelor of Science in Civil Engineering (BSCE) degree or the Bachelor of Arts (BA) degree. The more scientific BSCE includes four areas of specialization while the BA, with its two distinct major concentrations, affords students more flexibility, including the possibility to complete a double major with any other Rice University major.

At the graduate level, the department offers one non-thesis graduate degree, the Master of Civil and Environmental Engineering (MCEE), to students who desire additional education and specialization in the practice of civil engineering or environmental sciences and engineering. Students admitted for graduate study leading to a Master of Science (MS) or Doctor of Philosophy (PhD) degree must complete a rigorous course of study that combines advanced coursework with scholarly research culminating in the public defense of a written thesis. Graduate research is carried out in a range of areas reflecting the interests of the department’s faculty. Examples include environmental engineering, geotechnical engineering, structural engineering and mechanics, infrastructure reliability, hydrology, water resources and water quality management, air pollution and its control, and hazardous waste treatment.

Bachelor’s Programs

- Bachelor of Arts (BA) Degree with a Major in Civil and Environmental Engineering
 - and a Major Concentration in Civil Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/civil-environmental-engineering-ba-civil-concentration)
 - and a Major Concentration in Environmental Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/civil-environmental-engineering-ba-environmental-concentration)
 - Bachelor of Science in Civil Engineering (BSCE) Degree
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/civil-engineering-bsce)

Minor

- Minor in Energy and Water Sustainability
 - (ga.rice.edu/programs-study/departments-programs/engineering/energy-water-sustainability/energy-water-sustainability-minor)

Master’s Programs

- Master of Civil and Environmental Engineering (MCEE) Degree in the field of Civil Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/civil-engineering-mcee)
- Master of Civil and Environmental Engineering (MCEE) Degree in the field of Environmental Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/environmental-engineering-mcee)
- Master of Science (MS) Degree in the field of Civil Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/environmental-engineering-ms)
- Master of Science (MS) Degree in the field of Environmental Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/environmental-engineering-ms)

Doctoral Programs

- Doctor of Philosophy (PhD) Degree in the field of Civil Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/civil-engineering-phd)
- Doctor of Philosophy (PhD) Degree in the field of Environmental Engineering
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/environmental-engineering-phd)

Coordinated Programs

- Master of Civil and Environmental Engineering (MCEE) Degree in the field of Civil Engineering / Master of Business Administration (MBA) Degree
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/business-administration-mba-civil-engineering-mcee)
- Master of Civil and Environmental Engineering (MCEE) Degree in the field of Environmental Engineering / Master of Business Administration (MBA) Degree
 - (ga.rice.edu/programs-study/departments-programs/engineering/civil-environmental-engineering/business-administration-mba-environmental-engineering-mcee)

Chair

Robert J. Griffin

Professors

Pedro J. J. Alvarez
Philip B. Bedient
Reginald DesRoches
Qilin Li
Satish Nagarajaiah
Pol D. Spanos
Mason B. Tomson

Associate Professors

Daniel S. Cohan
Civil and Environmental Engineering

Leonardo A. Duenas-Osorio
Jamie E. Padgett
Ilincia Stanciulescu

Assistant Professors
Rouzbeh Shahsavari
Lauren Stadler

Professors Emeriti
Ahmad J. Durrani
Ronald P. Nordgren
Anestis S. Veletsos
Calvin H. Ward

Professor in the Practice of Environmental Law
James B. Blackburn

Professors in the Practice in Civil Engineering
Edmund P. Segner III

Lecturers
David T. Adamson
Mandi Chapa
Philip C. deBlanc
Travis McGuire
Charles M. Penland
Nestor Rubiano-Benavides
Christof Spieler
Bob Stevens
Steve Wilkerson

Joint Appointments
William T. Cannady
Michael S. Wong

Adjunct Professors
Jean-Yves Bottero
Wei Chen
Joe Cibor
Nick Fang
Jorge Loyo
Charles J. Newell
Carroll L. Oubre
Jerome Rose
Baxter E. Vieux

Adjunct Lecturer
Richard Johnson

For Rice University degree-granting programs:
To view the list of official course offerings, please see Rice’s Course Catalog (https://courses.rice.edu/admweb/ISWKSCAT.cat?p_action=cata)

Civil and Environmental Engineering (CEVE)

CEVE 100 - AP/OTH CREDIT IN ENVIRONMENTAL SCIENCE
Short Title: AP/OTH CR ENVIRONMENTL SCIENCE
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Transfer
Credit Hours: 3
Course Level: Undergraduate Lower-Level
Description: This course provides credit for students who have successfully completed approved examinations, such as Advanced Placement exams. This credit counts toward the total credit hours required for graduation.

CEVE 101 - FUNDAMENTALS OF CIVIL AND ENVIRONMENTAL ENGINEERING
Short Title: FUNDAMENTAL OF CIVIL & ENVIR E
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This introduction will cover the essential topics and quantitative techniques in civil and environmental engineering. General engineering, engineering math, fluid mechanics, hydrology, statistics, and mass balance techniques will be presented followed by applications.

CEVE 210 - WILD TOPICS IN CHEMISTRY AND NANOTECHNOLOGY
Short Title: WILD TOPICS CHEM AND NANOTECH
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: A variety of topics related to chemistry and nanotechnology will be discussed. Some topics are classical while others are current. Topics may include nanocars, molecular electronics, how to form a start-up company. Grades will be based upon attendance and quizzes. Cross-list: CHEM 210, MSNE 210. Repeatable for Credit.

CEVE 211 - ENGINEERING MECHANICS
Short Title: ENGINEERING MECHANICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141) and (MATH 101 or MATH 105) and (MATH 102 or MATH 106)
Description: The study of equilibrium of static systems, the dynamics of a particle and particle systems, and rigid-body dynamics. Required for mechanical engineering and materials science and engineering majors. Cross-list: MECH 211.
CEVE 301 - ENGINEERING ECONOMICS AND PROJECT MANAGEMENT
Short Title: ENG ECONOMICS & PROJECT MGMT
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Life cycle economics analysis to project development, project economic analysis, contracting, network scheduling, risk management, organizational structures and cases. Mutually Exclusive: Credit cannot be earned for CEVE 301 and CEVE 201/CEVE 479/CEVE 505/ENGI 505.

CEVE 302 - SUSTAINABLE DESIGN
Short Title: SUSTAINABLE DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: The objective of this course is to develop skills in formulating and solving problems of societal development and advancement in light of increasing material, energy and water demands and decreasing resource availability. Sustainable design requires balancing economic, ecological/environmental and social issues to create physical as well as social structures that will work for current and future generations. In addition to learning to apply sustainable design principles to individual engineering and developing projects, students will be challenged to understand the application of sustainable design thinking a the municipal and corporate level. Cross-list: ENST 307, ESCI 307. Graduate/Undergraduate Equivalency: CEVE 508. Mutually Exclusive: Credit cannot be earned for CEVE 302 and CEVE 502.

CEVE 303 - STRUCTURAL ANALYSIS I
Short Title: STRUCTURAL ANALYSIS I
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 211 or MECH 211
Description: Analysis of statically determinate structures; stability and determinacy; influence lines and deflections. Introduction to analysis of indeterminate structures by force and displacement methods.

CEVE 307 - ENERGY AND THE ENVIRONMENT
Short Title: ENERGY AND THE ENVIRONMENT
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course explores the physical principles of energy use and its impacts on Earth's environment and climate. Topics will include energy mechanics, climate change, and the environmental impacts and future prospects of various fossil fuel and alternative energy sources. Cross-list: ENST 307, ESCI 307. Graduate/Undergraduate Equivalency: CEVE 507. Mutually Exclusive: Credit cannot be earned for CEVE 307 and CEVE 507.

CEVE 308 - INTRODUCTION TO AIR POLLUTION CONTROL
Short Title: INTRO TO AIR POLLUTION CONTROL
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (CHEM 122 or CHEM 152) and (MATH 101 or MATH 105) and (MATH 102 or MATH 106) and (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141)
Description: This course will discuss the history of air pollution and its effects as motivation for control of anthropogenic emissions to the atmosphere. Topics will include air pollution control strategies and regulations, predictive pollution concentration models, general ideas to reduce air pollution, and specific technologies to limit emissions of criteria pollutants and their precursors. Graduate/Undergraduate Equivalency: CEVE 508. Mutually Exclusive: Credit cannot be earned for CEVE 308 and CEVE 508.

CEVE 310 - PRINCIPLES OF ENVIRONMENTAL ENGINEERING
Short Title: PRINCIPLES OF ENVI ENGINEERING
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course covers principles of water quality engineering, air pollution control and solid and hazardous waste management. Elements of risk assessment, global atmospheric change, and pollution prevention are also addressed to contribute to adequate-level competency in Environmental Engineering. Graduate students will write a term paper and prepare a lecture. Graduate/Undergraduate Equivalency: CEVE 510. Mutually Exclusive: Credit cannot be earned for CEVE 310 and CEVE 510.
CEVE 311 - MECHANICS OF SOLIDS AND STRUCTURES
Short Title: MECHANICS OF SOLIDS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 211 or MECH 211
Description: Analysis of stress and the deformation of solids with applications to beams, circular shafts, and columns. Open only to mechanical engineering and civil engineering majors. Required for mechanical engineering majors. Cross-list: MECH 311.

CEVE 312 - STRENGTH OF MATERIALS LAB
Short Title: STRENGTH OF MATERIALS LAB
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 304 (may be taken concurrently) and (CEVE 311 (may be taken concurrently) or MECH 311 (may be taken concurrently))
Description: Instruction in standard tension, compression, and torsion tests of ferrous and nonferrous metals. Includes experimental techniques and the behavior of structural elements. Prerequisites may be taken concurrently.

CEVE 313 - UNCERTAINTY AND RISK IN URBAN INFRASTRUCTURES
Short Title: UNCERT & RISK IN URBAN INFRAST
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): STAT 312 or STAT 310 or ECON 307 or ECON 382 or STAT 331 or ELEC 331
Description: This course explores methods for practical risk-based decision support, particularly for infrastructure systems. Uncertainty quantification (UQ) to external events including natural hazards is at the core of risk-informed design, operation, and mitigation actions. UQ will also guide engineering practice in the future as established by ASCE. The course emphasizes decision theory, Bayesian approaches, risk analysis tools, and infrastructure safety. Cross-list: STAT 313. Repeatable for Credit.

CEVE 314 - SUSTAINABLE WATER PURIFICATION FOR THE DEVELOPING WORLD
Short Title: SUST WTR PURIF FOR DEV WORLD
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course is an overview of sustainable strategies for safe water supply in off-the-grid, low-income regions. Topics covered include water quality and treatment, sustainability and WASH (water, sanitation and hygiene). A major element of the course is a project to solve a water-related issue in a real-world context. Cross-list: BIOE 365, GLHT 314. Repeatable for Credit.

CEVE 320 - ETHICS AND ENGINEERING LEADERSHIP
Short Title: ETHICS & ENGINRNG LEADERSHIP
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to students with a major in Civil & Environmental Engineer, Civil Engineering or Environment Analysis & Decisions. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 101
Description: Seminar introduces students to a framework for discussing and making ethical engineering and professional decisions. Using case studies and exercises, students will look at their own profession and its Engineering Code of Ethics as well as at the issues and risks they may face as managers and executives. Cross-list: ENGI 320. Graduate/Undergraduate Equivalency: CEVE 529. Mutually Exclusive: Credit cannot be earned for CEVE 320 and CEVE 529.

CEVE 322 - ENGINEERING ECONOMICS
Short Title: ENGINEERING ECONOMICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Introduction to the evaluation of alternative investment opportunities with emphasis on engineering projects and capital infrastructure. Time value of money concepts are developed in the context of detailed project evaluation and presentations. In addition, concepts and applications of risk analysis and investment under uncertainty are introduced. Requires oral and written presentations by students. Cross-list: ENGI 303. Graduate/Undergraduate Equivalency: CEVE 528. Mutually Exclusive: Credit cannot be earned for CEVE 322 and CEVE 528.
CEVE 323 - APPLIED SUSTAINABLE PLANNING AND DESIGN
Short Title: APPL. SUST. PLANNING & DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 211 or CEVE 211
Description: This course applies principles learned in CEVE 302/502 to real-world sustainability projects. Three to four case studies will comprise the class. These case studies will involve development of design solutions for (1) carbon neutral design, (2) ecosystem services transactions, (3) sustainable industrial applications and/or (4) air pollution and environmental justice. Graduate/Undergraduate Equivalency: CEVE 523. Mutually Exclusive: Credit cannot be earned for CEVE 323 and CEVE 523.

CEVE 363 - APPLIED FLUID MECHANICS
Short Title: APPLIED FLUID MECHANICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): MATH 212 and (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141)
Description: Study of fluid properties, fluid statics, and incompressible fluid steady flow. Includes energy and momentum equations with many applications, similitude and dimensional analysis, and viscous fluid flow in pipe networks. Required for B.S.C.E.

CEVE 400 - ADVANCED MECHANICS OF MATERIALS
Short Title: ADV MECHANICS OF MATERIALS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (MECH 211 or CEVE 211) and (MECH 311 or CEVE 311)
Description: Advanced topics in solid mechanics and strength of materials including energy methods, principle of virtual work, conservation laws, constitutive modeling, aspects of elasticity theory, stability and fracture mechanics with application to the analysis and design of reliable structures. Cross-list: MECH 400. Graduate/Undergraduate Equivalency: CEVE 500. Mutually Exclusive: Credit cannot be earned for CEVE 400 and CEVE 500.

CEVE 401 - CHEMISTRY FOR ENVIRONMENTAL ENGINEERING AND SCIENCE LAB
Short Title: ENVIRONMENTAL CHEMISTRY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 122 or CHEM 152 and (MATH 101 or MATH 105) and (MATH 102 or MATH 106) and (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141)
Description: Topics include: introductory concepts of general chemistry; applied physical chemistry; and organic and biochemical concepts as used in the profession. Undergraduate lab covers basic statistics and EPA-certified software for inorganic and organic property estimations needed for data reduction and report writing. Most common measures of water quality are performed by students including pH, Alkalinity, dissolved oxygen, spectroscopic methods, and soils extraction. Graduate/Undergraduate Equivalency: CEVE 501. Mutually Exclusive: Credit cannot be earned for CEVE 401 and CEVE 501.

CEVE 404 - ATMOSPHERIC PARTICULATE MATTER
Short Title: ATMOSPHERIC PARTICULATE MATTER
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 302 or CEVE 502
Description: This course applies principles learned in CEVE 302/502 to real-world sustainability projects. Three to four case studies will comprise the class. These case studies will involve development of design solutions for (1) carbon neutral design, (2) ecosystem services transactions, (3) sustainable industrial applications and/or (4) air pollution and environmental justice. Graduate/Undergraduate Equivalency: CEVE 523. Mutually Exclusive: Credit cannot be earned for CEVE 323 and CEVE 523.

CEVE 405 - STEEL DESIGN
Short Title: STEEL DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (MECH 211 or CEVE 211) and (MECH 311 or CEVE 311)
Description: Design of steel members, connections, and assemblies. Behavior of a member as related to design.
CEVE 406 - INTRODUCTION TO ENVIRONMENTAL LAW
Short Title: INTRO TO ENVIRONMENTAL LAW
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Introduction to Environmental Law is intended to introduce the student to the methods used by the United States and the international community to regulate and/or allocate air, water and land resources. A key focus of this course will be the emerging area of the law of sustainable development, including the implementation of full price costing, life cycle analysis, carbon cycle analysis, allocation of assimilative capacity and other similar issues. Cross-list: ENST 406.

CEVE 407 - REINFORCED CONCRETE DESIGN
Short Title: REINFORCED CONCRETE DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 311 or MECH 311
Description: Instruction in data analysis, design of concrete mix, testing of concrete cylinders, testing of concrete steel: beams; columns; and frames.

CEVE 408 - CONCRETE AND STEEL STRUCTURES LABORATORY
Short Title: CONCRETE LABORATORY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Corequisite: CEVE 407
Description: Instruction in data analysis, design of concrete mix, testing of concrete cylinders, testing of concrete steel: beams; columns; and frames.

CEVE 411 - ATMOSPHERIC PROCESSES
Short Title: ATMOSPHERIC PROCESSES
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 121 and CHEM 122 and (MATH 101 or MATH 105) and (MATH 102 or MATH 106) and (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141)
Description: Study of the chemical and physical processes that govern the formation, transformation, and transport of gases and particles in the atmosphere. Overview of urban and regional air pollution, including tropospheric ozone formation and particulate matter, stratospheric chemistry; and global climate change. Graduate/Undergraduate Equivalency: CEVE 511. Mutually Exclusive: Credit cannot be earned for CEVE 411 and CEVE 511.

CEVE 412 - HYDROLOGY AND WATER RESOURCES ENGINEERING
Short Title: HYDROLOGY & WATER RESOURCES ENG
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Fundamentals of the hydrologic cycle, meteorology, rainfall-runoff, flood routing, urban system design, and open channel flow are covered. Topics in ground water flow and well mechanics are also included. Applications include computational hydrology, floodplain analysis, watershed behavior, and low impact development. Group presentations are required. Graduate/Undergraduate Equivalency: CEVE 509. Mutually Exclusive: Credit cannot be earned for CEVE 412 and CEVE 509.

CEVE 417 - FINITE ELEMENT ANALYSIS
Short Title: FINITE ELEMENT ANALYSIS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (MATH 212 or MATH 222) and (CAAM 210 or CAAM 211)
Description: An introduction to finite element analysis by Galerkin's method and the method of least squares as applied to both ordinary and partial differential equations common in engineering applications. Element interpolations, numerical integration, computational considerations for efficient solution and post-processing methods. Application of the commercial codes to ANSYS and Cosmosworks. Cross-list: MECH 417. Mutually Exclusive: Credit cannot be earned for CEVE 417 and CEVE 517.
CEVE 418 - QUANTITATIVE HYDROGEOLOGY
Short Title: QUANTITATIVE HYDROGEOLOGY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Advanced course that will provide a quantitative overview of groundwater hydrology. Emphasis will be placed on mastering concepts in fluid mechanics and applying these concepts to water supply, environmental, and geological problems. Cross-list: ESCI 418.

CEVE 420 - ENVIRONMENTAL REMEDIATION RESTORATION
Short Title: ENVI REMEDIATION RESTORATION
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Remediation principles and application of full-scale remediation technologies for restoration of contaminated soil, groundwater, and surface water. Topics include mass balances and distribution of chemicals in environmental media; development of remediation goals through risk assessment; treatment technology selection criteria and costs; groundwater, soil, and surface water restoration technologies; and regulatory considerations. Graduate/Undergraduate Equivalency: CEVE 520. Mutually Exclusive: Credit cannot be earned for CEVE 420 and CEVE 520.

CEVE 424 - TIME-DEPENDENT SYSTEM RELIABILITY METHODS AND APPLICATIONS
Short Title: SYSTEM RELIABILITY METHODS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Students will learn computational simulation and theoretical techniques for the reliability assessment of engineered systems as a function of their component failure probabilities. We will explore time-dependent and algorithmic system reliability, and will use modern structural infrastructure systems as case studies, including power systems, wind turbines, bridges, and buildings. Graduate/Undergraduate Equivalency: CEVE 524. Mutually Exclusive: Credit cannot be earned for CEVE 424 and CEVE 524.

CEVE 427 - COMPUTATIONAL STRUCTURAL MECHANICS AND FEM
Short Title: COMPUTATIONAL STR MECH & FEM
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 311 or MECH 311
Description: Introduction to matrix structural analysis, trusses, beams, frames. Use of computer programs for structural analysis of Civil, Mechanical, and Aerospace Structures. Cross-list: MECH 427. Mutually Exclusive: Credit cannot be earned for CEVE 427 and CEVE 527.

CEVE 434 - FATE AND TRANSPORT OF CONTAMINANTS IN THE ENVIRONMENT
Short Title: FATE/TRANSPORT OF CONTAMINANTS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Physical and chemical principles governing the fate and transport of contaminants in the aqueous environment, and the applications of such principles in environmental engineering. Emphasis is put on mass transport and transportation processes in natural and engineering systems. Previous course work in fluid mechanics and calculus through differential equations is strongly suggested. Graduate/Undergraduate Equivalency: CEVE 534. Mutually Exclusive: Credit cannot be earned for CEVE 434 and CEVE 534.

CEVE 442 - WATER REUSE AND RESOURCE RECOVERY
Short Title: WATER REUSE AND RESOURCE RECOV
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course will focus on concepts of resource recovery and water reuse from wastewater and associated processes treatment needs. Students will understand the function and design of key biological, physical, and chemical treatment processes for wastewater treatment and resource recovery and water reuse applications.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Short Title</th>
<th>Department</th>
<th>Grade Mode</th>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Restrictions</th>
<th>Course Level</th>
<th>Description</th>
<th>Prerequisite(s)</th>
<th>Equivalency</th>
<th>Mutually Exclusive</th>
<th>Credit cannot be earned for CEVE 444 and CEVE 544.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEVE 444</td>
<td>ENVIRONMENTAL MICROBIOLOGY AND MICROBIAL ECOLOGY</td>
<td>ENVIRON MICROBIOL & ECOLOGY</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Upper-Level</td>
<td>Fundamentals of microbiology and the ecology of microbes, highlighting their interactions with each other and the environment, and integration of these principles in the context of important natural and engineered environmental systems. Graduate/Undergraduate Equivalency: CEVE 544. Mutually Exclusive: Credit cannot be earned for CEVE 444 and CEVE 544.</td>
<td>CEVE 454, MECH 454, BIOE 420 (may be taken concurrently)</td>
<td>CEVE 544</td>
<td>CEVE 444</td>
<td></td>
</tr>
<tr>
<td>CEVE 450</td>
<td>REMOTE SENSING</td>
<td>REMOTE SENSING</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture/Laboratory</td>
<td>3</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Upper-Level</td>
<td>Introduction to electromagnetic remote sensing of the earth and other planets using passive and active methods. The course includes a computer lab component involving processing and interpretation of remote sensing imagery, and an individual project. Cross-list: ESCI 450.</td>
<td>ESCI 450, MECH 450, BIOE 420 (may be taken concurrently)</td>
<td>CEVE 544</td>
<td>CEVE 444 and CEVE 544.</td>
<td></td>
</tr>
<tr>
<td>CEVE 452</td>
<td>URBAN TRANSPORTATION SYSTEMS</td>
<td>URBAN TRANSPORTATION SYSTEMS</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Upper-Level</td>
<td>Survey of operation characteristics of transport modes the elements of transportation planning, and the design of stationary elements.</td>
<td>ESCI 450, MECH 450, BIOE 420 (may be taken concurrently)</td>
<td>CEVE 544</td>
<td>CEVE 444 and CEVE 544.</td>
<td></td>
</tr>
<tr>
<td>CEVE 454</td>
<td>COMPUTATIONAL FLUID MECHANICS</td>
<td>COMPUTATIONAL FLUID MECHANICS</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Upper-Level</td>
<td>Fundamental concepts of finite element methods in fluid mechanics, including spatial discretization and numerical integration in multi-dimensions, time-integration, and solution of nonlinear ordinary differential equation systems. Advanced numerical stabilization techniques designed for fluid mechanics problems. Strategies for solution of complex, real-world problems. Topics in large-scale computing, parallel processing, and visualization. Prerequisites may be taken concurrently. Cross-list: BIOE 454, MECH 454, Graduate/Undergraduate Equivalency: CEVE 554. Mutually Exclusive: Credit cannot be earned for CEVE 445 and CEVE 554.</td>
<td>BIOE 420, MECH 454, BIOE 420 (may be taken concurrently)</td>
<td>CEVE 544</td>
<td>CEVE 444 and CEVE 544.</td>
<td></td>
</tr>
<tr>
<td>CEVE 460</td>
<td>BRIDGE ENGINEERING AND EXTREME EVENTS</td>
<td>BRIDGE ENG. & EXTREME EVENTS</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Upper-Level</td>
<td>This course integrates information from various engineering and scientific disciplines to provide a rational basis for bridge design under regular and extreme loading. It provides an introduction to bridge engineering, including bridge systems, construction material, loading, and reliability-based design. Design, analysis, and retrofit for seismic and coastal threats will be introduced. Graduate/Undergraduate Equivalency: CEVE 560. Recommended Prerequisite(s): CEVE 304 and CEVE 311 and CEVE 407. Mutually Exclusive: Credit cannot be earned for CEVE 460 and CEVE 560.</td>
<td>MECH 454</td>
<td>CEVE 544</td>
<td>CEVE 445 and CEVE 545.</td>
<td></td>
</tr>
<tr>
<td>CEVE 470</td>
<td>PRINCIPLES OF SOIL MECHANICS</td>
<td>PRINCIPLES OF SOIL MECHANICS</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>4</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>Undergraduate Upper-Level</td>
<td>Index and classification properties of soil including soil classification systems; clay minerals and soil structure; compaction theory; engineering behavior and properties of soils including permeability, compressibility and strength; design considerations. Required for B.S.C.E.</td>
<td>MECH 454</td>
<td>CEVE 545</td>
<td>CEVE 446 and CEVE 560.</td>
<td></td>
</tr>
</tbody>
</table>

Course Requirements

- **CEVE 444 - ENVIRONMENTAL MICROBIOLOGY AND MICROBIAL ECOLOGY**
 - **Short Title:** ENVIRON MICROBIOL & ECOLOGY
 - **Department:** Civil & Environmental Engr
 - **Grade Mode:** Standard Letter
 - **Course Type:** Lecture
 - **Credit Hours:** 3
 - **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
 - **Course Level:** Undergraduate Upper-Level
 - **Description:** Fundamentals of microbiology and the ecology of microbes, highlighting their interactions with each other and the environment, and integration of these principles in the context of important natural and engineered environmental systems. Graduate/Undergraduate Equivalency: CEVE 544. Mutually Exclusive: Credit cannot be earned for CEVE 444 and CEVE 544.

- **CEVE 450 - REMOTE SENSING**
 - **Short Title:** REMOTE SENSING
 - **Department:** Civil & Environmental Engr
 - **Grade Mode:** Standard Letter
 - **Course Type:** Lecture/Laboratory
 - **Credit Hours:** 3
 - **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
 - **Course Level:** Undergraduate Upper-Level
 - **Description:** Introduction to electromagnetic remote sensing of the earth and other planets using passive and active methods. The course includes a computer lab component involving processing and interpretation of remote sensing imagery, and an individual project. Cross-list: ESCI 450.

- **CEVE 452 - URBAN TRANSPORTATION SYSTEMS**
 - **Short Title:** URBAN TRANSPORTATION SYSTEMS
 - **Department:** Civil & Environmental Engr
 - **Grade Mode:** Standard Letter
 - **Course Type:** Lecture
 - **Credit Hours:** 3
 - **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
 - **Course Level:** Undergraduate Upper-Level
 - **Description:** Survey of operation characteristics of transport modes the elements of transportation planning, and the design of stationary elements.

- **CEVE 454 - COMPUTATIONAL FLUID MECHANICS**
 - **Short Title:** COMPUTATIONAL FLUID MECHANICS
 - **Department:** Civil & Environmental Engr
 - **Grade Mode:** Standard Letter
 - **Course Type:** Lecture
 - **Credit Hours:** 3
 - **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
 - **Course Level:** Undergraduate Upper-Level
 - **Description:** Fundamental concepts of finite element methods in fluid mechanics, including spatial discretization and numerical integration in multi-dimensions, time-integration, and solution of nonlinear ordinary differential equation systems. Advanced numerical stabilization techniques designed for fluid mechanics problems. Strategies for solution of complex, real-world problems. Topics in large-scale computing, parallel processing, and visualization. Prerequisites may be taken concurrently. Cross-list: BIOE 454, MECH 454. Graduate/Undergraduate Equivalency: CEVE 554. Mutually Exclusive: Credit cannot be earned for CEVE 445 and CEVE 554.

- **CEVE 460 - BRIDGE ENGINEERING AND EXTREME EVENTS**
 - **Short Title:** BRIDGE ENG. & EXTREME EVENTS
 - **Department:** Civil & Environmental Engr
 - **Grade Mode:** Standard Letter
 - **Course Type:** Lecture
 - **Credit Hours:** 3
 - **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
 - **Course Level:** Undergraduate Upper-Level
 - **Description:** This course integrates information from various engineering and scientific disciplines to provide a rational basis for bridge design under regular and extreme loading. It provides an introduction to bridge engineering, including bridge systems, construction material, loading, and reliability-based design. Design, analysis, and retrofit for seismic and coastal threats will be introduced. Graduate/Undergraduate Equivalency: CEVE 560. Recommended Prerequisite(s): CEVE 304 and CEVE 311 and CEVE 407. Mutually Exclusive: Credit cannot be earned for CEVE 460 and CEVE 560.

- **CEVE 470 - PRINCIPLES OF SOIL MECHANICS**
 - **Short Title:** PRINCIPLES OF SOIL MECHANICS
 - **Department:** Civil & Environmental Engr
 - **Grade Mode:** Standard Letter
 - **Course Type:** Lecture
 - **Credit Hours:** 4
 - **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
 - **Course Level:** Undergraduate Upper-Level
 - **Description:** Index and classification properties of soil including soil classification systems; clay minerals and soil structure; compaction theory; engineering behavior and properties of soils including permeability, compressibility and strength; design considerations. Required for B.S.C.E.
CEVE 476 - STRUCTURAL DYNAMIC SYSTEMS
Short Title: STRUCTURAL DYNAMIC SYSTEMS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 311 or MECH 311
Description: Introduction to structural dynamic systems. Linear SDOF and MDOF discrete systems, undamped and damped systems, free and forced vibration, dynamic response to periodic and arbitrary excitations, numerical evaluation of dynamic response, response spectrum and modal analysis. Additional topics for graduate version 576: Linear systems theory, transform methods, state space methods, feedback control, observers and identification. Applications using MATLAB. Demonstrations and laboratory examples. Students will be required to do more advanced assignments and a project. Graduate/Undergraduate Equivalency: CEVE 576. Mutually Exclusive: Credit cannot be earned for CEVE 476 and CEVE 576.

CEVE 477 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Laboratory, Lecture, Seminar, Internship/Practicum
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

CEVE 480 - SENIOR DESIGN
Short Title: SENIOR DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: The capstone designed course in the Spring Semester will provide senior engineering students with a complete designed experience including fundamental design issues in the major areas of the curriculum, small team experiences, project proposals, progress reports and presentations, design software and computations, major report writing, and a final presentation to the CEE faculty and an external jury of professional engineers. An established local firm will assist in teaching practical design methods and consultation with other faculty is required as part of the overall experience.

CEVE 481 - INTRODUCTION TO SENIOR DESIGN
Short Title: INTRODUCTION TO SENIOR DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Semester. Lectures will focus on various engineering design topics and CAD training. Potential design projects will be introduced and students will form interdisciplinary design teams. Design teams will present before jury to win their design projects.

CEVE 484 - ENVIRONMENTAL RISK ASSESSMENT & HUMAN HEALTH
Short Title: ENVIRON RISK ASSESS&HUMAN HLTH
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): STAT 280 or STAT 305
Description: Learn and apply quantitative risk assessment methodology to estimate human health risk from environmental exposure to contamination in air, soil and water. Students will conduct a series of team projects focused on toxicology, risk based screening levels, exposure concentration estimation and risk characterization. Cross-list: STAT 484. Graduate/Undergraduate Equivalency: CEVE 684. Mutually Exclusive: Credit cannot be earned for CEVE 484 and CEVE 684.

CEVE 492 - MODELING AND ANALYSIS OF NETWORKED SYSTEMS
Short Title: MODELING & ANALYSIS OF NET SYS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CEVE 484 or STAT 280 or STAT 305
Description: This course introduces methods for modeling, characterizing and predicting the behavior of complex infrastructure and technological systems. The discussed analysis methods rely on network science optimization, and computational complexity principles so as to unravel the emergent features of structural and infrastructure systems. Topological properties, ranking tools, dynamic processes, and percolation-based resilience are studied from analytical, algorithmic, and numerical simulation perspectives. The course also explores interdependencies and mitigation actions for spatially and temporally evolving systems. The graduate level course includes advanced exercises in homework and exams, as well as a research-oriented final project. Graduate/Undergraduate Equivalency: CEVE 592. Mutually Exclusive: Credit cannot be earned for CEVE 492 and CEVE 592. Repeatable for Credit.
CEVE 500 - ADVANCED MECHANICS OF MATERIALS
Short Title: ADV MECHANICS OF MATERIALS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): (MECH 211 or CEVE 211) and (MECH 311 or CEVE 311)
Description: Advanced topics in solid mechanics and strength of materials including energy methods, principle of virtual work, conservation laws, constitutive modeling, aspects of elasticity theory, stability and fracture mechanics with application to the analysis and design of reliable structures. Cross-list: MECH 500. Graduate/Undergraduate Equivalency: CEVE 400. Mutually Exclusive: Credit cannot be earned for CEVE 500 and CEVE 400.

CEVE 499 - SPECIAL PROBLEMS
Short Title: SPECIAL TOPICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-12
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Independent research and investigation, including a course toward directed research and/or a research project. Study of selected topics including individual investigations special lectures, and seminars. Student works independently with only minimal faculty direction. Offered upon mutual agreement of faculty and student. May earn varying amount of credit hours depending on the amount of time devoted and the amount of academic work associated with the course. Repeatable for Credit.

CEVE 501 - CHEMISTRY FOR ENVIRONMENTAL ENGINEERING AND SCIENCE
Short Title: ENVIRONMENTAL CHEMISTRY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Topics include: introductory concepts of general chemistry, applied physical chemistry, and organic and biochemical concepts as used in the profession. Graduate students are required to write and present an advanced paper. Graduate/Undergraduate Equivalency: CEVE 401. Mutually Exclusive: Credit cannot be earned for CEVE 501 and CEVE 401.

CEVE 502 - SUSTAINABLE DESIGN
Short Title: SUSTAINABLE DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: The objective of this course is to develop skills in formulating and solving problems of societal development and advancement in light of increasing material, energy and water demands and decreasing resource availability. Sustainable design requires balancing economic, ecological/environmental and social issues to create physical as well as social structures that will work for current and future generations. In addition to learning to apply sustainable design principles to individual engineering and developing projects, students will be challenged to understand the application of sustainable design thinking a the municipal and corporate level. Graduate students will be required to undertake additional assignments relative to sustainable design. Graduate/Undergraduate Equivalency: CEVE 302. Mutually Exclusive: Credit cannot be earned for CEVE 502 and CEVE 302.

CEVE 496 - SYSTEM IDENTIFICATION OF DYNAMIC SYSTEMS
Short Title: SYSTEM IDENTIFICATION
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Introduction to modeling and system identification of dynamic systems and structures to wind, wave and earthquake forces. MATLAB programming and use of computer software. Students in CEVE 596 (GR version) will be required to do more advanced assignments and a project. Graduate/Undergraduate Equivalency: CEVE 596. Mutually Exclusive: Credit cannot be earned for CEVE 496 and CEVE 596.

CEVE 503 - NONLINEAR FINITE ELEMENT ANALYSIS
Short Title: NONLINEAR FEM
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
CEVE 504 - ATMOSPHERIC PARTICULATE MATTER
Short Title: ATMOSPHERIC PARTICULATE MATTER
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): (CHEM 122 or CHEM 152) and (MATH 101 or MATH 105) and (MATH 102 or MATH 106) and (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141)
Description: Description and examination of the processes determining the chemical and physical characteristics of atmospheric aerosol particles. Important focal points include aerosol measurements and control techniques and aerosol climate effects. Most attention will be paid to processes active in the troposphere, but important differences between the troposphere and stratosphere are addressed. Extra work required for graduate students. Graduate/Undergraduate Equivalency: CEVE 404. Mutually Exclusive: Credit cannot be earned for CEVE 504 and CEVE 404.

CEVE 507 - ENERGY AND THE ENVIRONMENT
Short Title: ENERGY AND THE ENVIRONMENT
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course explores the physical principles of energy use and its impacts on Earth’s environment and climate. Topics will include energy mechanics, climate change, and the environmental impacts and future prospects of various fossil fuel and alternative energy sources. Additional problems will be assigned to Graduate students. Graduate/Undergraduate Equivalency: CEVE 307. Mutually Exclusive: Credit cannot be earned for CEVE 507 and CEVE 307.

CEVE 508 - INTRODUCTION TO AIR POLLUTION CONTROL
Short Title: INTRO TO AIR POLLUTION CONTROL
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): (MATH 101 or MATH 105) and (MATH 102 or MATH 106)
Description: This course will discuss the history of air pollution and its effects as motivation for control of anthropogenic emissions to the atmosphere. Topics will include air pollution control strategies and regulations, predictive pollution concentration models, general ideas to reduce air pollution, and specific technologies to limit emissions of criteria pollutants and their precursors. Additional paper is required for graduate students. Graduate/Undergraduate Equivalency: CEVE 308. Mutually Exclusive: Credit cannot be earned for CEVE 508 and CEVE 308.

CEVE 509 - HYDROLOGY AND WATER RESOURCES ENGINEERING
Short Title: HYDROLOGY & WATER RESOURCES ENG
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Fundamentals of the hydrologic cycle, meteorology, rainfall-runoff, flood routing, urban system design, and open channel flow are covered. Topics in ground water flow and well mechanics are also included. Applications include computational hydrology, floodplain analysis, watershed behavior, and low impact development. Group presentations are required. The graduate level course includes an extra paper. Graduate/Undergraduate Equivalency: CEVE 412. Mutually Exclusive: Credit cannot be earned for CEVE 509 and CEVE 412.

CEVE 510 - PRINCIPLES OF ENVIRONMENTAL ENGINEERING
Short Title: PRINCIPLES OF ENVI ENGINEERING
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers principles of water quality engineering, air pollution control and solid and hazardous waste management. Elements of risk assessment, global atmospheric change, and pollution prevention are also addressed to contribute to adequate-level competency in Environmental Engineering. Graduate students will write a term paper and prepare a lecture. Graduate/Undergraduate Equivalency: CEVE 310. Mutually Exclusive: Credit cannot be earned for CEVE 510 and CEVE 310.

CEVE 511 - ATMOSPHERIC PROCESSES
Short Title: ATMOSPHERIC PROCESSES
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHEM 121 and CHEM 122 and (MATH 101 or MATH 105) and (MATH 102 or MATH 106) and (PHYS 101 or PHYS 111 or PHYS 125 or PHYS 141)
Description: Study of the chemical and physical processes that govern the formation, transformation, and transport of gases and particles in the atmosphere. Overview of urban and regional air pollution, including tropospheric ozone formation and particulate matter; stratospheric chemistry; and global climate change. Extra work required for graduate students. Graduate/Undergraduate Equivalency: CEVE 411. Mutually Exclusive: Credit cannot be earned for CEVE 511 and CEVE 411.
CEVE 512 - ADVANCED HYDROLOGY AND HYDRAULICS
Short Title: ADV HYDROLOGY & HYDRAULICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers principles and applications of the GIS programs, theory and implementation of advanced hydrologic and hydraulic models, and the linkage of these models to engineering analysis of important water problems. GIS software is covered in detail. Each class consists of an advanced theory lecture followed by modeling tutorials using Hec-HMS, VFLO, and Hec-RA5 codes. A semester group project addresses a full watershed analysis with class presentations and engineering reports required.

CEVE 517 - FINITE ELEMENT ANALYSIS
Short Title: FINITE ELEMENTS ANALYSIS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Course Level: Graduate
Prerequisite(s): (MATH 212 or MATH 222) and (CAAM 210 or CAAM 211)
Description: An introduction to Galerkin’s method and the method of least squares applied to partial differential equations. Computational considerations for efficient interpolation, numerical integration, solution and post-processing methods. Error estimation and adaptive finite element analysis. Requires the use of solid works for a student project and a supporting literature survey. Mutually Exclusive: Credit cannot be earned for CEVE 517 and CEVE 417.

CEVE 518 - CONTAMINANT HYDROGEOLOGY
Short Title: CONTAMINANT HYDROGEOLOGY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Groundwater hydrology, well mechanics, hydraulic. Contaminant transport issues in aquifer systems, numerical models, of large aquifers. Topics in water resources engineering and aquifer water management. Use of major computer models is covered in detail.

CEVE 519 - ELASTICITY, PLASTICITY AND DAMAGE MECHANICS
Short Title: ELASTICITY/PLASTICITY/DAMAGE
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: An overview of phenomena that determine the response of solids to deformation and loading: elasticity, plasticity, damage mechanics and cracking. Review of continuum mechanics with emphasis on the physical mechanisms of deformation and fracture. Classification of the behavior of solids. Modeling of different types of material behavior. The physics underlying the phenomena and methods for the numerical analysis of the resulting equations are discussed. Cross-list: MECH 519.

CEVE 520 - ENVIRONMENTAL REMEDIATION RESTORATION
Short Title: ENVI REMEDIATION RESTORATION
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Remediation principles and application of full-scale remediation technologies for restoration of contaminated soil, groundwater, and surface water. Topics include mass balances and distribution of chemicals in environmental media; development of remediation goals through risk assessment; treatment technology selection criteria and costs; groundwater, soil, and surface water restoration technologies; and regulatory considerations. Graduate students receive additional, more challenging assignments. Graduate/Undergraduate Equivalency: CEVE 420. Mutually Exclusive: Credit cannot be earned for CEVE 520 and CEVE 420.

CEVE 523 - APPLIED SUSTAINABLE PLANNING AND DESIGN
Short Title: APPL. SUST. PLANNING & DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CEVE 302 or CEVE 502
Description: This course applies principles learned in CEVE 302/502 to real-world sustainability projects. Three to four case studies will comprise the class. These case studies will involve development of design solutions for (1) carbon neutral design, (2) ecosystem services transactions, (3) sustainable industrial applications and/or (4) air pollution and environmental justice. Graduate/Undergraduate Equivalency: CEVE 323. Mutually Exclusive: Credit cannot be earned for CEVE 523 and CEVE 323.

CEVE 524 - TIME-DEPENDENT SYSTEM RELIABILITY METHODS AND APPLICATIONS
Short Title: SYSTEM RELIABILITY METHODS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Students will learn computational simulation and theoretical techniques for the reliability assessment of engineered systems as a function of their component failure probabilities. We will explore time-dependent and algorithmic system reliability, and will use modern structural infrastructure systems as case studies, including power systems, wind turbines, bridges, and buildings. Extra provisions for graduate students in assignments, exams, and projects. Graduate/Undergraduate Equivalency: CEVE 424. Mutually Exclusive: Credit cannot be earned for CEVE 524 and CEVE 424.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Short Title</th>
<th>Department</th>
<th>Grade Mode</th>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Restrictions</th>
<th>Course Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEVE 527</td>
<td>COMPUTATIONAL STRUCTURAL MECHANICS AND FEM</td>
<td>COMPUTATIONAL STR MECH & FEM</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Introduction to differential and integral formulations, minimum principles, variational principles, weighted residuals, energy principles, and principle of virtual work. Boundary, initial, and eigenvalue problems. Finite element and finite difference methods for structural mechanics. Applications to static and dynamic truss beams and frame problems. MATLAB programming and use of computer software. Students in CEVE 527 (GR version) will be required to do more advanced assignments and a project. Cross-list: MECH 527. Mutually Exclusive: Credit cannot be earned for CEVE 527 and CEVE 427.</td>
</tr>
<tr>
<td>CEVE 528</td>
<td>ENGINEERING ECONOMICS</td>
<td>ENGINEERING ECONOMICS</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Introduction to the evaluation of alternative investment opportunities with emphasis on engineering projects and capital infrastructure. Time value of money concepts are developed in the context of detailed project evaluation and presentations. In addition, concepts and applications of risk analysis and investment under uncertainty are developed. Requires oral and written presentations by students. Grad students will have an additional case study to perform beyond CEVE 322 requirements. Cross-list: ENGI 528. Graduate/Undergraduate Equivalency: CEVE 322. Mutually Exclusive: Credit cannot be earned for CEVE 528 and CEVE 322.</td>
</tr>
<tr>
<td>CEVE 529</td>
<td>ETHICS AND ENGINEERING LEADERSHIP</td>
<td>ETHICS & ENGRNG LEADERSHIP</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to students with a major in Civil & Environmental Engineer, Civil Engineering or Environment Analysis&Decisions. Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Seminar introduces students to a framework for discussing and making ethical engineering and professional decisions. Using case studies and exercises, students will look at their own profession and its Engineering Code of Ethics as well as at the issues and risks they may face as managers and executives. Graduate students will do an extra paper. Instructor Permission Required. Cross-list: ENGI 529. Graduate/Undergraduate Equivalency: CEVE 320. Mutually Exclusive: Credit cannot be earned for CEVE 529 and CEVE 320.</td>
</tr>
<tr>
<td>CEVE 530</td>
<td>CONCRETE BUILDING DESIGN</td>
<td>CONCRETE BUILDING DESIGN</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Design of reinforced concrete building structures and floor slab systems. Case histories will be discussed.</td>
</tr>
<tr>
<td>CEVE 531</td>
<td>PHYSICAL CHEMICAL PROCESSES FOR WATER QUAL CONTROL</td>
<td>PHYS CHEM PROC WATER QUAL CTRL</td>
<td>Civil & Environmental Engr</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Principles, modeling and design aspects of physical chemical treatment processes in drinking water, wastewater and groundwater remediation applications. Modern treatment technologies such as membrane separation, advanced oxidation, and photocatalysis will be covered.</td>
</tr>
</tbody>
</table>
CEVE 538 - COMPUTATIONAL NANOSCIENCE FOR GREEN INFRASTRUCTURE
Short Title: COMPUTATIONAL NANOSCIENCE
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Computational methods such as first principles, kinetic Monte Carlo (KMC), classical MC (in Canonical, Grand Canonical, and isobaric-isothermal ensembles), and classic MD in predicting materials formation and properties. Case studies include cementitious materials, metals, and thermolectric materials. Other case studies are possible depending on the student's background and instructor's approval. Cross-list: MSNE 538.

CEVE 540 - STEEL BUILDING DESIGN
Short Title: STEEL BUILDING DESIGN
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CEVE 405
Description: Exploration of practical design form conceptual stage to final analysis. Includes design parameters and serviceability limitations.

CEVE 544 - ENVIRONMENTAL MICROBIOLOGY AND MICROBIAL ECOLOGY
Short Title: ENVIRON MICROBIOL & ECOLOGY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Fundamentals of microbiology and the ecology of microbes, highlighting their interactions with each other and the environment, and integration of these principles in the context of important natural and engineered environmental systems. Graduate/Undergraduate Equivalency: CEVE 444. Mutually Exclusive: Credit cannot be earned for CEVE 544 and CEVE 444.

CEVE 550 - ENVIRONMENTAL ORGANIC CHEMISTRY
Short Title: ENVIRONMENTAL ORGANIC CHEM
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): MECH 371 (may be taken concurrently) or CEVE 363 or BIOE 420
Description: A course covering parameter estimation methods, thermodynamics, and kinetic needed to predict the fate, transports, and reactivity of organic compounds in air, water, and soils. Topics: volatization, solubility, sorption, partitioning, diffusion, aquatic reactivity, photochemistry, and transport modeling.

CEVE 554 - COMPUTATIONAL FLUID MECHANICS
Short Title: COMPUTATIONAL FLUID MECHANICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): MECH 554. Graduate/Undergraduate Equivalency: CEVE 454. Mutually Exclusive: Credit cannot be earned for CEVE 554 and CEVE 454.

CEVE 555 - NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
Short Title: NUMERICAL METHODS FOR PDES
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers various numerical methods for solving partial differential equations: aspects of finite difference methods, finite element methods, finite volume methods, mixed methods, discontinuous Galerkin methods, and meshless methods. Both theoretical convergence and practical implementation of the methods are studied for elliptic and parabolic problems. May receive credit for only one of the following courses: CAAM 452/CEVE 455/CAAM 536/CEVE 555. Cross-list: CAAM 536. Recommended Prerequisite(s): CAAM 336 Mutually Exclusive: Credit cannot be earned for CEVE 555 and CEVE 455.
CEVE 560 - BRIDGE ENGINEERING AND EXTREME EVENTS
Short Title: BRIDGE ENG. & EXTREME EVENTS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course integrates information from various engineering and scientific disciplines to provide a rational basis for bridge design under regular and extreme loading. It provides an introduction to bridge engineering, including bridge systems, construction material, loading, and reliability-based design. Design, analysis, and retrofit for seismic and coastal threats will be introduced. Graduate/Undergraduate Equivalency: CEVE 460. Recommended Prerequisite(s): CEVE 304 and CEVE 311. Mutually Exclusive: Credit cannot be earned for CEVE 560 and CEVE 460.

CEVE 565 - NANOTECHNOLOGY ENVIRONMENTAL ENGINEERING FOR TEACHERS (NEET)
Short Title: NANOENVIRONMENTL ENGR-TEACHERS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: The Nano-Environmental Engineering for Teachers (NEET) course is designed to serve AP environmental science teachers. The purpose of the program is to increase the current knowledge of educators to empower them in implementing rigorous project-based engineering activities on the topic of water sustainability. Instructor Permission Required.

CEVE 570 - FOUNDATION ENGINEERING
Short Title: FOUNDATION ENGINEERING
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CEVE 470
Description: Subsurface exploration methods and techniques; lateral earth pressures and design of retaining walls; bearing capacity and shallow foundation design; settlement considerations; design of deep foundations; temporary excavations and dewatering.

CEVE 576 - STRUCTURAL DYNAMIC SYSTEMS
Short Title: STRUCTURAL DYNAMIC SYSTEMS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Introduction to structural dynamic systems. Linear SDOF and MDOF discrete systems, undamped and damped systems, free and forced vibration, dynamic response to periodic and arbitrary excitations, numerical evaluation of dynamic response, response spectrum and modal analysis. Additional topics for graduate version 576: Linear systems theory, transform methods, state space methods, feedback control, observers and identification. Applications using MATLAB. Demonstrations and laboratory examples. Students will be required to do more advanced assignments and a project. Cross-list: MECH 576. Graduate/Undergraduate Equivalency: CEVE 476. Mutually Exclusive: Credit cannot be earned for CEVE 576 and CEVE 476.

CEVE 578 - EARTHQUAKE ENGINEERING
Short Title: EARTHQUAKE ENGINEERING
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Characteristics of ground motion, analysis methods for linear and nonlinear base excited structures, and principles of seismic design including case studies and performance based engineering concepts. Probabilistic methods in earthquake engineering including seismic hazard analysis, fragility modeling, and risk assessment and mitigation. Recommended Prerequisite(s): CEVE 576 or equivalent course in Structural Dynamics.

CEVE 590 - MCEE SPECIAL STUDY
Short Title: MCEE SPECIAL STUDY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 2-3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Professional master Project course involves the following (1) a project of practical relevance to the practice of Civil and Environmental Engineering, and (2) detailed project report. Students need to work with a faculty advisor. Instructor Permission Required. Repeatable for Credit.
CEVE 592 - MODELING AND ANALYSIS OF NETWORKED SYSTEMS
Short Title: MODELING & ANALYSIS OF NET SYS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course introduces methods for modeling, characterizing and predicting the behavior of complex infrastructure and technological systems. The discussed analysis methods rely on network science optimization, and computational complexity principles so as to unravel the emergent features of structural and infrastructure systems. Topological properties, ranking tools, dynamic processes, and percolation-based resilience are studied from analytical, algorithmic, and numerical simulation perspectives. The course also explores interdependencies and mitigation actions for spatially and temporally evolving systems. The graduate level course includes advanced exercises in homework and exams, as well as a research-oriented final project. Graduate/Undergraduate Equivalency: CEVE 492. Mutually Exclusive: Credit cannot be earned for CEVE 592 and CEVE 492. Repeatable for Credit.

CEVE 596 - SYSTEM IDENTIFICATION OF DYNAMIC SYSTEMS
Short Title: SYSTEM IDENTIFICATION
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Introduction to modeling and system identification of dynamic systems and structures to wind, wave and earthquake forces. MATLAB programming and use of computer software. Students in CEVE 596 (GR version) will be required to do more advanced assignments and a project. Graduate/Undergraduate Equivalency: CEVE 496. Mutually Exclusive: Credit cannot be earned for CEVE 596 and CEVE 496.

CEVE 635 - ADVANCED TOPICS: WATER CHEMISTRY
Short Title: ADV TOPICS: WATER CHEMISTRY
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1-12
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Formal lecture and assigned reading in topics such as redox kinetics and thermodynamics, absorption and desorption, and the associated mathematics. An advanced topics course. Repeatable for Credit.

CEVE 640 - ADVANCED TOPICS IN ENVIRONMENTAL ENGINEERING SCIENCES
Short Title: ADV TOPICS/ENVIRONMENTAL ENG
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 1-12
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Special topics in Graduate Study.
CEVE 641 - ADVANCED TOPICS IN ENVIRONMENTAL ENGINEERING
Short Title: ADV TOPICS/ENVIRONMENTAL ENG
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 1-12
Restrictions: Enrollment is limited to Graduate level students.
Description: Advanced topics in Graduate Study.
CEVE 651 - M.S. RESEARCH AND THESIS
Short Title: M.S. RESEARCH AND THESIS
Department: Civil & Environmental Engr
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 1-15
Restrictions: Enrollment is limited to Graduate level students.
Description: Repeatable for Credit.
CEVE 652 - M.S. RESEARCH AND THESIS
Short Title: M.S. RESEARCH AND THESIS
Department: Civil & Environmental Engr
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 1-15
Restrictions: Enrollment is limited to Graduate level students.
Description: Repeatable for Credit.
CEVE 654 - ADVANCED COMPUTATIONAL MECHANICS
Short Title: ADV COMPUTATIONAL MECHANICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Prerequisite(s): CEVE 554 or BIOE 554 or MECH 554 or BIOE 454 or CEVE 454 or MECH 454
CEVE 677 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Seminar, Lecture, Laboratory, Internship/Practicum
Credit Hours: 1-4
Restrictions: Enrollment is limited to Graduate or Visiting Graduate level students.
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.
CEVE 678 - ADVANCED STOCHASTIC MECHANICS
Short Title: ADV STOCHASTIC MECHANICS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Description: Nonlinear random vibrations, Statistical Linearization, ARMA filters modeling, Monte Carlo Simulation, Wiener-Volterra series, time-variant structural reliability, and Stochastic Finite Elements are presented from a perspective of usefulness to aerospace, civil, marine, and mechanical applications. Cross-list: MECH 678.
CEVE 679 - APPLIED MONTE CARLO ANALYSIS
Short Title: APPLIED MONTE CARLO ANALYSIS
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Description: Probability density and power spectrum based simulation concepts and procedures are discussed. Scalar and vectorial simulation are addressed. Spectral decomposition and digital filter algorithms are presented. Applications from aerospace, earthquake, marine, and wind engineering, and from other applied science disciplines are included. Cross-list: MECH 679.
CEVE 684 - ENVIRONMENTAL RISK ASSESSMENT & HUMAN HEALTH
Short Title: ENVIRON RISK ASSESS&HUMAN HLTH
Department: Civil & Environmental Engr
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Prerequisite(s): STAT 280 or STAT 305
Description: Learn and apply quantitative risk assessment methodology to estimate human health risk from environmental exposure to contamination in air, soil and water. Students will conduct a series of team projects focused on toxicity, risk-based screening levels, exposure concentration estimation and risk characterization. Cross-list: STAT 684. Graduate/Undergraduate Equivalency: CEVE 484. Mutually Exclusive: Credit cannot be earned for CEVE 684 and CEVE 484.
CEVE 736 - ADVANCED RESEARCH TOPICS: ENVIRONMENTAL BIOTECHNOLOGY AND NANOTECHNOLOGY
Short Title: ADV TOPICS:ENVIR BIOTECH & NAN
Department: Civil & Environmental Engr
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Description: Research oriented presentations and discussions of landmark papers and experimental methods for doctoral students in the Alvarez research group. Repeatable for Credit.
Description and Code Legend

Note: Internally, the university uses the following descriptions, codes, and abbreviations for this academic program. The following is a quick reference:

Course Catalog/Schedule
- Course offerings/subject code: CEVE

Department Description and Code
- Civil and Environmental Engineering: CEEG

Undergraduate Degree Descriptions and Codes
- Bachelor of Arts degree: BA
- Bachelor of Science in Civil Engineering degree: BSCE

Undergraduate Major Descriptions and Codes
- Major in Civil Engineering (offered to students pursuing the BSCE degree): CIVI
- Major in Civil and Environmental Engineering (offered to students pursuing the BA degree): CEEG

Undergraduate Major Concentration Descriptions and Codes
- Major Concentration in Civil Engineering (attached to the BA degree): CIEG
- Major Concentration in Environmental Engineering (attached to the BA degree): ENEG

Undergraduate Major Areas of Specialization Descriptions and Attribute Codes*
- Area of Specialization in Area I - Environmental Engineering (BSCE degree only): CEEN
- Area of Specialization in Area II - Hydrology and Water Resources (BSCE degree only): CEHW
- Area of Specialization in Area III - Structural Engineering and Mechanics (BSCE degree only): CESM
- Area of Specialization in Area IV - Urban Infrastructure, Reliability, and Management (BSCE degree only): CEUR

Please Note: Areas of Specialization are department/program-specific and are not formally recognized academic credentials. Unlike Major

Graduate Degree Descriptions and Codes
- Master of Civil and Environmental Engineering degree: MCEE
- Master of Science degree: MS
- Doctor of Philosophy degree: PhD

Graduate Degree Program Descriptions and Codes
- Degree Program in Civil Engineering: CIVI
- Degree Program in Environmental Engineering: ENVI

* Systems Use Only: this information is used solely by internal offices at Rice University (such as OTR, GPS, etc.) and primarily within student information systems and support.