The Master of Industrial Engineering degree program is scheduled to start in Fall 2019 (Academic Year 2019-2020).

The Master of Industrial Engineering degree is a graduate degree program administered by the George R. Brown School of Engineering, with the participation of the Rice University Departments of Mechanical Engineering and Statistics, and the Rice Center for Operations Research.

The program is designed to explore modern industrial systems, which arise in fields such as manufacturing, services, supply chain management, energy, transportation and healthcare. Analyzing and optimizing their performance is very challenging; for example, the number of ways that Federal Express can route its vehicles vastly exceeds the number of atoms in the universe. These analyses are crucial, their financial impact typically exceeds the profit margins in many industries, such as transportation and retailing.

To meet these challenges, the Master of Industrial Engineering degree emphasizes improving the quality and reliability of complex systems. It provides students with a deep set of analytical and engineering skills, and contextual knowledge of important problem domains, such as manufacturing, supply chain, energy and healthcare. Graduates will help industry, governments and non-profits improve efficiency in changing and uncertain environments.

Industrial Engineering does not currently offer an academic program at the undergraduate level.

Master's Program

- Master of Industrial Engineering (MIE) Degree (ga.rice.edu/programs-study/departments-programs/engineering/industrial-engineering-industrial-engineering-mie/#outcomestext)

Director

Andrew J. Schaefer

Professors

Michael D. Byrne, Psychological Sciences
Fathi Ghorbel, Mechanical Engineering
Illya V. Hicks, Computational & Applied Mathematics
C. Fred Higgs III, Mechanical Engineering
Marcia K. O'Malley, Mechanical Engineering
Amit Pazgal, Business
Eduardo Salas, Psychological Sciences
Andrew J. Schaefer, Computational & Applied Mathematics
Laura Schaefer, Mechanical Engineering
Pol D. Spanos, Mechanical Engineering

Richard A. Tapia, Computational & Applied Mathematics
Yin Zhang, Computational & Applied Mathematics

Associate Professors

Leonardo Dueñas-Osorio, Civil and Environmental Engineering
Philip T. Kortum, Psychological Sciences

Assistant Professors

Matthew Brake, Mechanical Engineering
Philip A. Ernst, Statistics
Pedram Hassanzadeh, Mechanical Engineering

Assistant Teaching Professor

Eleazar Marquez, Mechanical Engineering

Professor in the Practice

John Dobelman, Statistics

Lecturer

Eylem Tekin, Industrial Engineering

For Rice University degree-granting programs:
To view the list of official course offerings, please see Rice's Course Catalog (https://courses.rice.edu/admweb/!SWKSCAT.cat?p_action=cata)
To view the most recent semester's course schedule, please see Rice's Course Schedule (https://courses.rice.edu/admweb/!SWKSCAT.cat)

Industrial Engineering (INDE)

INDE 501 - FUNDAMENTALS OF INDUSTRIAL ENGINEERING
- Short Title: FUND INDUSTRIAL ENGINEERING
- Department: Industrial Engineering
- Grade Mode: Standard Letter
- Course Type: Lecture
- Credit Hours: 3
- Restrictions: Enrollment is limited to Graduate level students.
- Course Level: Graduate
- Description: Introduction to fundamental tools in industrial engineering. Topics include productivity analysis, material handling, logistics, design of experiments, quality control, location theory, warehouse design, supply chain management and scheduling. Instructor Permission Required.

INDE 509 - INTRODUCTION TO HUMAN FACTORS ENGINEERING
- Short Title: INTRO TO HUMAN FACTORS ENG
- Department: Industrial Engineering
- Grade Mode: Standard Letter
- Course Type: Lecture
- Credit Hours: 3
- Restrictions: Enrollment is limited to Graduate level students.
- Course Level: Graduate
- Prerequisite(s): INDE 501
- Description: Analysis and design of engineering systems considering human characteristics and limitations. Design of control, displays, tools, workstations and groups. Human factors research methods. Instructor Permission Required.
INDE 545 - PRESCRIPTIVE ANALYTICS
Short Title: PRESCRIPTIVE ANALYTICS
Department: Industrial Engineering
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A survey of methods for combining mathematical models and large data sets to produce optimal decisions. Topics include decision analysis, dynamic programs, mathematical programs and various heuristics. Instructor Permission Required.

INDE 546 - COMPUTATIONAL PRESCRIPTIVE ANALYTICS
Short Title: COMP PRESCRIPTIVE ANALYTICS
Department: Industrial Engineering
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): INDE 545
Description: A continuation of INDE 545 that focuses on computational approaches to prescriptive analytics. Topics include decomposition approaches to large-scale optimization, modeling languages, decision analysis and discrete-event simulation software. Emphasis will be placed on using relevant software on practical problems. Instructor Permission Required.

INDE 547 - TOPICS IN INDUSTRIAL ENGINEERING CAPSTONE EXPERIENCE
Short Title: MIE CAPSTONE EXPERIENCE
Department: Industrial Engineering
Grade Mode: Standard Letter
Course Type: Research
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: MIE students are required to write a field report related to one of the required core courses in the curriculum. Students should coordinate this with the INDE 590 instructor/capstone director, prepare a report relevant to the course material, and present it in class. Instructor Permission Required. Recommended Prerequisite(s): INDE 501 and INDE 545 and INDE 571.

INDE 548 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Industrial Engineering
Grade Mode: Standard Letter
Course Type: Seminar, Lecture, Laboratory, Internship/Practicum
Credit Hours: 1-4
Restrictions: Enrollment is limited to Graduate or Visiting Graduate level students.
Course Level: Graduate
Description: Topics and credit hours may vary each semester. Instructor Permission Required. Repeatable for Credit.

INDE 561 - SUPPLY CHAIN MANAGEMENT
Short Title: SUPPLY CHAIN MANAGEMENT
Department: Industrial Engineering
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): INDE 545
Description: Supply chain management is the integrated management of the flow of materials, products, services, and cash from the suppliers all the way to the customers and from the customers back to the suppliers. Due to the complex nature of today's supply chains, effective management of these flows is a challenging task. This course aims to familiarize students with the concepts and models that are useful in designing and managing effective and efficient supply chains. Topics include facility location and distribution models, forecasting, sales & operations planning, supply chain coordination, inventory management, transportation, supplier selection, pricing & revenue management, and sustainability in supply chains. Instructor Permission Required.

INDE 562 - STOCHASTIC PROCESSES AND SIMULATION
Short Title: STOCH PROCESSES & SIMULATION
Department: Industrial Engineering
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): INDE 571
Description: Topics include Markov chains, renewal processes, queueing theory, statistical quality control, discrete-event simulation, random number generators, Monte Carlo methods, resampling methods, Markov Chain Monte Carlo, importance sampling and simulation based estimation for stochastic processes.

INDE 563 - PROBABILITY AND STATISTICAL INFERENCE
Short Title: PROB & STATISTICAL INFERENCE
Department: Industrial Engineering
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Topics include probability, random variables, probability distributions, transformations, moment generating functions, common families of distributions, independence, sampling and convergence, basics of estimation theory, hypothesis testing, Bayesian inference, ANOVA, regression. Introduction to statistical software.
Program Description and Code
• Industrial Engineering: INDE

Graduate Degree Description and Code
• Master of Industrial Engineering: MIE

Graduate Degree Program Description and Code
• Degree Program in Industrial Engineering: INDE

CIP Code and Description
1
• INDE Major/Program: CIP Code/Title: 14.3701 - Operations Research

1 Classification of Instructional Programs (CIP) 2010 Codes and Descriptions from the National Center for Education Statistics: https://nces.ed.gov/ipeds/cipcode/