The BioSciences department unites faculty engaged in research and teaching in a wide range of disciplines within the life sciences, creating a vibrant and diverse community of scholars. The department offers a broad range of introductory and advanced courses that lead to undergraduate degrees (BA, BS) with a Major in Biosciences and a Major Concentration in Biochemistry, in Cell Biology and Genetics, in Ecology and Evolutionary Biology, or in Integrative Biology.

In addition, a Minor in Biochemistry and Cell Biology and a Minor in Ecology and Evolutionary Biology are offered. The BA degree offers a rigorous biological curriculum suitable for many career paths while allowing the flexibility for extended academic exploration in other areas. The BS degree offers greater depth in upper-level coursework. Most BioSciences students, regardless of major, participate in undergraduate research, availing themselves of the numerous research opportunities at Rice and in the Houston community.

All major degree paths will prepare students for graduate, medical, or other professional schools and a wide range of careers in the life sciences. In addition, qualified students may apply to the Biochemistry and Cell Biology BA-MS-PhD program track. Additional information on departmental programs, courses, and advising is available at the BioSciences website.

The BioSciences department also oversees academic programs that lead to undergraduate degrees in Environmental Science (BA, BS), as well as a Minor in Neuroscience. At the graduate-level, the BioSciences department administers graduate programs in Biochemistry and Cell Biology (PhD, MS) and in Ecology and Evolutionary Biology (PhD, MS). In addition, some BioSciences faculty members participate in the Systems, Synthetic, and Physical Biology (SSPB) PhD program administered by the Institute of Biosciences and Bioengineering. Graduate studies include a combination of advanced coursework and individual research with faculty mentors.

For additional information regarding BioSciences and its associated academic programs, please see the department's website: https://biosciences.rice.edu/.

### Bachelor's Programs

- **Bachelor of Arts (BA) Degree with a Major in Biosciences**
  - and a Major Concentration in Biochemistry (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/biochemistry-ba/)
  - and a Major Concentration in Cell Biology and Genetics (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/cell-biology-and-genetics-ba/)
  - and a Major Concentration in Ecology and Evolutionary Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/ecology-and-evolutionary-biology-ba/)
  - and a Major Concentration in Integrative Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/integrative-biology-ba/)

- **Bachelor of Science (BS) Degree with a Major in Biosciences**
  - and a Major Concentration in Biochemistry (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/biochemistry-bs/)
  - and a Major Concentration in Cell Biology and Genetics (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/cell-biology-and-genetics-bs/)
  - and a Major Concentration in Ecology and Evolutionary Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/ecology-and-evolutionary-biology-bs/)
  - and a Major Concentration in Integrative Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/integrative-biology-bs/)

- **Bachelor of Arts (BA) Degree with a Major in Neuroscience** (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/neuroscience/neuroscience-ba/)

- **Bachelor of Science (BS) Degree with a Major in Neuroscience**
  - and a Major Concentration in Computational Neuroscience (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/neuroscience/computational-neuroscience-bs/)
  - and a Major Concentration in Molecular and Cellular Neuroscience (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/neuroscience/molecular-cellular-neuroscience-bs/)

### Minors

- **Minor in Biochemistry and Cell Biology** (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/biochemistry-cell-biology-minor/)
- **Minor in Ecology and Evolutionary Biology** (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/ecology-evolutionary-biology-minor/)
- **Minor in Neuroscience** (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/neuroscience/neuroscience-minor/)

### Accelerated Program

- **Bachelor of Arts (BA) Degree / Master of Science (MS) Degree / Doctor of Philosophy (PhD) Degree in the field of Biochemistry and Cell Biology** (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/cell-biology-ba-bs-phd/)

---

**Contact Information**

**BioSciences**

https://biosciences.rice.edu/

W-100 George R. Brown Hall

713-348-4015

Edward P. Nikonowicz

Department Chair

edin@rice.edu

Mary Susan Cates

Assistant Department Chair

mscates@rice.edu

---

**2023-2024 General Announcements PDF Generated 01/08/24**
Master’s Programs

- Master of Science (MS) Degree in the field of Biochemistry and Cell Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/biochemistry-cell-biology-ms/)
- Master of Science (MS) Degree in the field of Ecology and Evolutionary Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/ecology-evolutionary-biology-ms/)

Doctoral Programs

- Doctor of Philosophy (PhD) Degree in the field of Biochemistry and Cell Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/biochemistry-cell-biology-phd/)
- Doctor of Philosophy (PhD) Degree in the field of Ecology and Evolutionary Biology (https://ga.rice.edu/programs-study/departments-programs/natural-sciences/biosciences/ecology-evolutionary-biology-phd/)

Chair
Edward P. Nikonowicz

Professors

Caroline Ajo-Franklin
Bonnie Bartel
Kathleen M. Beckingham
Matthew Bennett
Janet Braam
Daniel D. Carson
Michael C. Gustin
Oleg A. Igoshin
Caroline A. Masiello
Seiichi P.T. Matsuda
James A. McNew
Luay K. Nakhleh
Edward P. Nikonowicz
Jose Nelson Onuchic
George Phillips
Volker H.W. Rudolf
Yousif Shamo
Evans Siemann
Jonathan J. Silberg
Michael Stern
Charles R. Stewart
Yizhi Jane Tao
Peter C. Wolynes

Associate Professors

Amy E. Dunham
Scott Egan
Natalia Kirienko
Sven Kranz
Peter Y. Lwigale
Thomas E.X. Miller
Julia Saltz
Laura Segatori

Jeffrey J. Tabor
Daniel S. Wagner
Aryeh Warmflash

Assistant Professors

Caleb Bashor
Lydia Beaudrot
James Chappell
Marcos de Moraes
Kory Evans
Yang Gao
Anna-Karin Gustavsson
Isaac Hilton
Laura Lavery
Theresa Loveless
George Lu
Matthew McCary
Adrienne Simoes Correa
Rosa Uribe
Han Xiao

Professors Emeriti

George N. Bennett
Frank M. Fisher, Jr.
Raymond M. Glantz
Paul A. Harcombe
Jordan Konisky
Kathleen Shive Matthews
John Steven Olson
Graham A. Palmer
David Queller
Ronald L. Sass
Joan Strassman
Stephen Subtelny
Calvin H. Ward

Teaching Faculty

Beth Beason-Abmayr
Daniel J. Catanese
Jonathan Flynn
Cassidy Johnson
Nele Lefeldt
Scott Solomon

Lecturers

Mary Susan Cates
Elizabeth Eich
Kirstin Matthews
Joseph R. Novak
Dereth Phillips
Cana Ross

Adjunct Faculty

Richard Behringer
Sarah Bondos
Nikki Delk
Cintia de Paiva
Cindy Farach-Carson
Haichun Gao
Jeffrey Glassberg
Richard H. Gomer
Nancy Greig
Daniel Harrington
Maria K. Hartley
Kendal Hirschi
Kresimir Josic
Olivier Lichtarge
Jianpeng Ma
Kevin R. MacKenzie
Pamela Constantinou Papadopoulos
Neal R. Pellis
Susan M. Rosenberg
Clarence F. Sams
Erica Ollmann Saphire
Kelly L. Weinersmith
Peggy Whitson
Zheng Zhou
Huda Zoghbi

Senior Baker Institute Fellow
Kristin R. Matthews

EEB Faculty Fellows
Jocelyn Holt
Rafael Sobral Marcondes

Rice Academy Fellow
Durre Muhammad

For Rice University degree-granting programs:
To view the list of official course offerings, please see Rice's Course Catalog [https://courses.rice.edu/admweb/ISWKSCAT.cat?p_action=cata](https://courses.rice.edu/admweb/ISWKSCAT.cat?p_action=cata)
To view the most recent semester's course schedule, please see Rice's Course Schedule [https://courses.rice.edu/admweb/ISWKSCAT.cat](https://courses.rice.edu/admweb/ISWKSCAT.cat)

**Biosciences (BIOS)**

**BIOS 100 - TRANSFER CREDIT – INTRODUCTORY BIOLOGY LABORATORY**

- **Short Title:** TRANSFER CREDIT/INTRO BIOL LAB
- **Department:** Biosciences
- **Grade Mode:** Transfer Courses
- **Course Type:** Transfer
- **Credit Hours:** 1-2
- **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
- **Course Level:** Undergraduate Lower-Level

**Description:** For transfer of an introductory biology laboratory course in the BioSciences that is designated for biology majors and/or pre-health professionals and that has no current equivalent in the Rice curriculum. Any student may receive a maximum of one BIOC 100 course for a maximum of 2 credit hours. This credit counts toward the total credit hours required for graduation, but does not fulfill any major or minor requirements for Biosciences. Students must contact the BioSciences transfer credit advisor to determine if their course will transfer. Instructor Permission Required.

**BIOS 110 - INTRODUCTION TO RESEARCH**

- **Short Title:** INTRODUCTION TO RESEARCH
- **Department:** Biosciences
- **Grade Mode:** Satisfactory/Unsatisfactory
- **Course Type:** Research
- **Credit Hours:** 5
- **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
- **Course Level:** Undergraduate Lower-Level

**Description:** This 7-week course is for high school juniors and seniors to conduct scientific research in the laboratories of Rice faculty in Biosciences. Students will engage in full time research and will be mentored by experienced researchers under the supervision of Rice faculty. Participating students will also receive formal instruction on the basics of scientific research and receive 5 hours of Rice University course credit. Interested students must first complete the department application which can be found on the Biosciences website here on Undergraduate Research: [https://biosciences.rice.edu/undergraduate-programs](https://biosciences.rice.edu/undergraduate-programs). After department approval, students will be required to enroll as a visiting student; tuition and fees will apply. Instructor Permission Required. Repeatable for Credit.

**Course URL:** biosciences.rice.edu/undergraduate-research

**BIOS 118 - FIRST-YEAR SEMINAR IN LOCAL BIOLOGY RESEARCH (BIOCHEMISTRY, CELL BIOLOGY, AND GENETICS FOCUS)**

- **Short Title:** FIRST-YEAR SEMINAR (BCBG)
- **Department:** Biosciences
- **Grade Mode:** Standard Letter
- **Course Type:** Seminar
- **Credit Hour:** 1
- **Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
- **Course Level:** Undergraduate Lower-Level

**Description:** A 7-week seminar course to introduce first-year prospective biologists to the excitement of research at Rice and the Medical Center and to provide context with which to think about facts presented in biosciences textbooks. Small groups will meet weekly with a graduate student or postdoctoral researcher to explore a published research article by a local lab, gaining background information about the subject and exposure to the research techniques. In the final session, the group will tour the lab that produced the featured article. Additional tours and activities TBA. All first-year non-transfer students are eligible to enroll in BIOS 118 regardless of AP credit. This course meets in the second half of the semester and features research in biochemistry, cell biology, and genetics, and related fields.
BIOS 119 - FIRST-YEAR SEMINAR IN LOCAL BIOLOGY RESEARCH
(ECOLOGY AND EVOLUTIONARY BIOLOGY FOCUS)
Short Title: FIRST-YEAR SEMINAR (EEB)
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Description: A 7-week seminar course to introduce first-year prospective biologists to the excitement of research at Rice and to provide context with which to think about facts presented in biosciences textbooks. Small groups will meet weekly with a graduate student or postdoctoral researcher to explore a published research article by a local lab, gaining background information about the subject and exposure to the research techniques. In the final session, the group will tour the lab that produced the featured article. Additional tours and activities TBA. All first-year, non-transfer students are eligible to enroll in BIOS 119 regardless of AP credit. This course meets in the first half of the semester and features research in Ecology and Evolutionary Biology.

BIOS 122 - BIOLOGY FOR VOTERS
Short Title: BIOLOGY FOR VOTERS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Students cannot enroll who have a major in Biochemistry and Cell Biology, Biological Sciences or Ecology & Evolutionary Biology. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Designer babies, climate change, the anti-vaccine movement, gender identity, evolution...exploring these and other socially relevant topics will provide a context for learning essential concepts in biology and ways to distinguish science truth from science fiction.
Course URL: www.ruf.rice.edu/~bioslabs/bioc122/ (http://www.ruf.rice.edu/~bioslabs/bioc122/)

BIOS 124 - INTRODUCTION TO ECOLOGY AND EVOLUTIONARY BIOLOGY
Short Title: INTRO TO EEB
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This course provides a short introduction to the science of ecology and evolutionary biology. The topics covered include the mechanisms of evolution, the origin of species, the history of life on earth, biodiversity, animal behavior, population and community ecology, ecosystems, and conservation biology.

BIOS 127 - TREESTEM: TEACHING (IN) RESTORATION, ECOLOGY, & ENVIRONMENTAL STEM
Short Title: TREESTEM
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Internship/Practicum
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Urban ecosystems provide valuable spaces for investigations of biodiversity, ecosystem structure, and the impacts of human activity on plant and animal communities. Students in this course will explore these phenomena two ways: first, through learning and applying ecological techniques and then developing a field school curriculum to teach these skills to their peers from local community colleges. This “community of practice” instructional model gives students an opportunity to organize and guide their own learning while also providing mentorship to other learners. This course will build authentic skills in scientific communication, educational pedagogy, peer mentorship, while also providing an immersive experience addressing the environmental challenges that are facing the Houston area. Repeatable for Credit.

BIOS 128 - BRAINSTEM - TEACHING STEM THROUGH NEUROSCIENCE
Short Title: BRAINSTEM
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Internship/Practicum
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: BrainSTEM is a service organization that teaches STEM subjects through the lens of neuroscience. We perform hands-on, small-group activities with ~45 students per week. This course will prepare you to communicate science in a both effective and entertaining manner, as well as build your skills in managing small groups. More information can be found at www.brainstem.club. Graduate/Undergraduate Equivalency: BIOS 528. Mutually Exclusive: Cannot register for BIOS 128 if student has credit for BIOS 528. Repeatable for Credit.

BIOS 150 - INTRODUCTORY LABORATORY IN BIOSCIENCES
Short Title: INTRO LAB IN BIOSCIENCES
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This introductory laboratory experience is designed for students transferring to Rice from community colleges or other 4-year institutions. The course, which will incorporate both in-person lab work and online modules in Canvas, will equip students with fundamental lab skills and introduce them to essential scientific communication skills. Instructor Permission Required. Mutually Exclusive: Cannot register for BIOS 150 if student has credit for FWIS 115/NSCI 120.
BIOS 201 - INTRODUCTORY BIOLOGY I
Short Title: INTRODUCTORY BIOLOGY I
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: The first in a series of two introductory biology courses (BIOS 201, BIOS 202). This course examines biochemistry, cell physiology, cell biology, Mendelian genetics, molecular genetics, developmental biology, plant biology, and neurobiology.

BIOS 202 - INTRODUCTORY BIOLOGY II
Short Title: INTRODUCTORY BIOLOGY II
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): BIOS 201 or BIOS 201
Description: The second in a series of two introductory biology courses (BIOS 201, BIOS 202). This course examines the diversity of life, comparative animal physiology, evolution, ecology, and conservation. An emphasis is placed on evolution as a central framework necessary for a complete understanding of modern biology. Group discussions allow students to explore topics in more detail and discover how they are relevant to our everyday lives.

BIOS 204 - ENVIRONMENTAL SUSTAINABILITY: THE DESIGN & PRACTICE OF COMMUNITY AGRICULTURE
Short Title: COMMUNITY GARDEN
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: The course introduces the fundamentals of community garden design and practice. Responsibilities will center on developing and improving the Rice Community Garden. A strong emphasis will be on learning and applying ecological principles to the practice of community agriculture. Class has required meetings outside of regular class time.

BIOS 210 - INTRODUCTION TO RESEARCH
Short Title: INTRODUCTION TO RESEARCH
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 1-5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This course is only for Rice students conducting research for the first time. The students will conduct scientific research in the laboratories of the Rice faculty in Biosciences. During the five-week course, students will engage in full time research and will be mentored by experienced researchers under the supervision of Rice faculty. Participating students will also receive formal instruction on the basics of scientific research and innovation. Instructor permission is required to register. Instructor Permission Required. Repeatable for Credit.

BIOS 211 - INTERMEDIATE EXPERIMENTAL CELLULAR AND MOLECULAR BIOSCIENCES
Short Title: EXPERIMENTAL CELL & MOL BIOSCI
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students. Students in the Fall 2023 New UG Transfer or Fall 2023 UG New First Time cohorts may not enroll.
Course Level: Undergraduate Lower-Level
Prerequisite(s): BIOS 201 (may be taken concurrently)
Description: Introduction to scientific method, principles of experimental design, selected research strategies, record keeping, and technical communication as related to research in cellular and molecular biosciences. The prerequisite BIOS 201 may be taken concurrently with BIOS 211. Registration restricted to Biosciences majors for sections 001, 002, 003, 004, and 005. BCB minors can register for sections 007, 008, 009, 010, and 011, or with instructor permission.

BIOS 212 - INTERMEDIATE EXPERIMENTAL CELLULAR AND MOLECULAR NEUROSCIENCE
Short Title: EXPERIMENTAL NEUROSCIENCE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (CAAM 210 (may be taken concurrently) or CMOR 220 (may be taken concurrently) or COMP 140 (may be taken concurrently))
Description: Introduction to the scientific method, principles of experimental design, selected research strategies, record keeping, and technical communication as related to neuroscience. The pre-req CAAM 210 and COMP 140 and BIOS 201 may be taken concurrently with BIOS 212.
BIOS 213 - INTRODUCTORY LAB IN ECOLOGY & EVOLUTION
Short Title: INTRO LAB ECOL & EVOL
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): EBIO 202 or BIOS 202 (may be taken concurrently)
Description: Experimental, laboratory, and field studies of natural history, ecology, evolution, and animal behavior. Class has required meetings outside of regular class time.

BIOS 215 - BIOSCIENCES LAB TEACHING
Short Title: BIOSCIENCES LAB TEACHING
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 1-2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Undergraduate teaching in a biosciences laboratory course: provide group and individual guidance and instruction to students during scheduled laboratory sessions and outside of laboratory classes; participate in meetings with instructor and other TAs; assist instructor with lab prep; evaluate student learning and give feedback to instructor. Instructor Permission Required. Repeatable for Credit.

BIOS 216 - DISCUSSION SECTION TEACHING
Short Title: DISCUSSION SECTION TEACHING
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Independent Study
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: In this course, undergraduates who have previously excelled in a BIOS course will develop teaching skills by leading discussion sections or serving as writing mentors under the guidance of the course instructor. Instructor Permission Required. Repeatable for Credit.

BIOS 238 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Laboratory, Lecture, Lecture/Laboratory, Seminar, Independent Study
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

BIOS 250 - INTERMEDIATE LABORATORY IN BIOSCIENCES
Short Title: INTERMEDIATE LAB IN BIOSCIENCES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: In BIOS 250 students conduct investigative studies in the areas of biological science, neuroscience, natural history, ecology, evolution, and/or animal behavior. These studies may encompass original research, instructor-designed experiments, and/or online projects with curated data, depending on the availability of in-person laboratory and/or field experiences. This course is available to students who cannot reasonably be expected to complete BIOS 211, 212, or 213 and will substitute for that course requirement for any major concentration or minor in BioSciences, subject to approval by the instructors of the course to be replaced and the BioSciences Undergraduate Curriculum Committee. Instructor Permission Required.

BIOS 271 - ENVIRONMENTAL MANAGEMENT
Short Title: ENVIRONMENTAL MANAGEMENT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This course will focus on applied environmental management with topics including conservation, impact assessments, sustainable financing, technology (e.g., eDNA, drones), and environmental regulations. Graduate/Undergraduate Equivalency: BIOS 571.

BIOS 280 - SUSTAINABLE DEVELOPMENT AND REPORTING
Short Title: SUSTAINABLE DEVELOPMENT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Sustainable development is an approach to development based on interacting social, economic, and environmental forces. It is intended as methodology for planning, and a guiding principle for Environmental Health and safety compliance (EHSs) and Corporate Sustainability (CSRs). Students will learn compliance guidelines, risk management, and assessment considerations. Graduate/Undergraduate Equivalency: BIOS 580. Mutually Exclusive: Cannot register for BIOS 280 if student has credit for BIOS 580.
BIOS 299 - EXPERIENTIAL EDUCATION IN BIO SCIENCES
Short Title: EXPERIENTIAL EDUC IN BIOS
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Internship/Practicum
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This experiential education course credits a student's experience in an approved internship/practicum with the goal of further developing their professional skills. Hour and activity requirements are flexible to accommodate a variety of experiential activities in biology-related professional contexts. There are no prerequisites. To receive approval to enroll, students must arrange their own internship, apply to the course instructor (https://forms.gle/NGruMJJziYRRNN5CL8), and produce an offer letter from their internship provider containing start and end dates and a description of their intended internship activities and expectations. Additional requirements are available on the course syllabus. Instructor Permission Required. Repeatable for Credit.

BIOS 300 - PARADIGMS IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: PARADIGMS IN BIOCHEM & CELL BIO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 201
Description: This course, which examines paradigms in biochemistry and cell biology with a specific focus on the "central dogma" of molecular biology, is designed for Biosciences majors and minors and is recommended for students who want to strengthen their fundamental biology knowledge before taking other 300-level BIOS lecture courses. Using a "flipped" format, lectures are available online, and in-class activities address confusions/questions, examine both historic and contemporary research papers, explore cases and problems, and engage students in short writing assignments.

BIOS 301 - BIOCHEMISTRY I
Short Title: BIOCHEMISTRY I
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 211 and (BIOC 201 or BIOS 201)
Description: The second in an integrated sequence of three courses (BIOS 201, 301, 302). Structure and function of proteins, enzymes, and nucleic acids; enzyme kinetics; glycolysis, aerobic metabolism, and energy coupling.

BIOS 302 - BIOCHEMISTRY II
Short Title: BIOCHEMISTRY II
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 301 or BIOS 301
Description: The final in an integrated sequence of three courses (BIOS 201, 301, 302). In depth study of carbohydrate, amino acid, and lipid metabolic pathways, hormone regulation of metabolic pathways, key cell signaling mechanisms, and the structural biology of DNA replication, transcription, and translation into proteins. Course also involves analysis of primary scientific literature.

BIOS 310 - INDEPENDENT RESEARCH FOR BIO SCIENCES UNDERGRADUATES
Short Title: IND RES FOR BIOS UNDERGRADS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 111 or BIOC 112 or FWIS 115 or NSCI 120 or BIOC 211 or BIOS 211 or BIOC 212 or BIOS 213 or BIOS 212 or EBI 306
Description: Independent research in Rice BioSciences faculty laboratories (sections 2 and above) or other Texas Medical Center laboratories (section 1). Students must have secured a research position prior to applying for BIOS 310. Students spend at least 42 hours in the laboratory for each semester hour of credit (>9h/week for 3 credits). A minimum of 3 credit hours is needed to count toward the BS in Biosciences or to replace one required 300+ level elective lab course for the BA in Biosciences (cannot replace major concentration core labs). Requires a proposal abstract, weekly reports, and a research paper (fall/spring/summer) or a poster presentation (spring/summer for advanced students). Students wishing to perform their research in an off-campus lab must apply online (biosugresearch.rice.edu) at least 3 weeks prior to the start of classes and may not register for fewer than 3 credit hours. Students taking BIOS 310 in the full summer semester must be available to do full-time research for a minimum of 6 weeks or part-time equivalent which should equal to a total of 126 hours working in the lab. It is recommended that summer students spread their hours over 8-10 weeks. Recommended Prerequisite(s): Students are strongly advised to secure research advisors and register for the class well in advance of the start of classes. Instructor Permission Required. Recommended Prerequisite(s): Students are strongly advised to secure research advisors and register for the class well in advance of the start of classes. Repeatable for Credit.
Course URL: www.biosugresearch.rice.edu/ (http://www.biosugresearch.rice.edu/)
BIOS 311 - EXPERIMENTAL BIOCHEMISTRY
Short Title: EXPERIMENTAL BIOCHEMISTRY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Students with a class of Freshman may not enroll. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 211 or BIOS 211) and (BIOC 301 or BIOS 301 (may be taken concurrently))
Description: Advancement of biochemical laboratory methods, record keeping, technical communication skills, and research strategies. Students will maintain a research quality laboratory notebook and will submit a paper in the style of a journal article. Pre-req BIOS 301 may be taken concurrently with BIOS 311.

BIOS 312 - ADVANCED COMMUNICATION IN THE BIOLOGICAL SCIENCES
Short Title: ADV COMMUNICATION IN BIOL SCI
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course will focus on improving students’ written and oral communication skills. Emphasis will be placed on communication of scientific topics for audiences ranging from experts to the general public through weekly assignments. Instructor Permission Required. Repeatable for Credit.

BIOS 313 - EXPERIMENTAL SYNTHETIC BIOLOGY
Short Title: EXPERIMENTAL SYNTHETIC BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 211 or BIOS 211 or BIOC 212 or BIOS 212
Description: Students learn molecular biological procedures commonly used to build and characterize synthetic genetic circuits. Teams of students work on a research project in the interdisciplinary field of synthetic biology. Students continue to develop technical communication skills.

BIOS 314 - EXPERIMENTAL MOLECULAR BIOLOGY
Short Title: EXP MOLECULAR BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology, Biological Sciences or Biosciences. Students cannot enroll who have a concentration in Ecol & Evolutionary Biol. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 211 or BIOS 211
Description: Application of strategies in molecular biology to investigate gene expression and function with an emphasis on experimental design, data analysis, and data interpretation. Student teams will maintain a laboratory notebook and prepare a scientific poster. Offered spring semester.

BIOS 315 - EXPERIMENTAL PHYSIOLOGY
Short Title: EXPERIMENTAL PHYSIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to students with a major in Biosciences or Neuroscience. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 211 or BIOS 212
Description: Exploration of physiological processes and the mechanisms behind them. Students will have opportunities to design a research study, collect and analyze data, and report their findings.

BIOS 316 - LAB MODULE IN ECOLOGY
Short Title: LAB MODULE IN ECOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (EBIO 202 or BIOS 202) and (EBIO 213 or BIOS 213)
Description: This course consists of a required multiple day trip to a field station in the Lower Rio Grande Valley over spring recess in February. Days will be spent in the field making observations and collecting data. Lectures and activities in the evenings will cover topics including population ecology, community ecology, habitat restoration, and conservation biology. The course also includes meetings on campus before and after the required field trip.
BIOS 317 - LAB MODULE IN BEHAVIOR
Short Title: LAB MODULE IN BEHAVIOR
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 211 or BIOS 211) and (EBIO 213 or BIOS 213)
Description: Field experiments in behavior. Learn to formulate and test hypotheses on bird behavior using mockingbirds, grackles, and herons nesting on campus. Class has required meetings outside of regular class time.

BIOS 318 - MICROBIOLOGY LABORATORY
Short Title: MICROBIOLOGY LABORATORY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 211 or BIOS 211 or BIOC 212 or BIOS 212
Description: In teams, students will participate in ongoing faculty research by isolating and characterizing bacterial species from environmental samples.
Course URL: www.ruf.rice.edu/~bioslabs/bios318/ (http://www.ruf.rice.edu/~bioslabs/bios318/)

BIOS 319 - TROPICAL FIELD BIOLOGY
Short Title: TROPICAL FIELD BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Examine first-hand the two most diverse ecosystems on earth - the coral reef and the tropical rainforest in this 2-week summer course in the Central American country of Belize. Topics will include the diversity of tropical organisms and habitats, the formation of coral reefs, rainforest ecology, historical biogeography, symbiosis, and conservation of tropical biodiversity. While a background in biology is desirable, individuals lacking this background but having a special interest in the tropics are encouraged to enroll. Includes a course fee that covers all transportation, accommodation, and meals. Distribution Credit for BIOS 319 no longer eligible beginning Fall 2019. Instructor Permission Required.

BIOS 320 - ECOLOGY AND CONSERVATION OF BRAZILIAN WETLANDS LABORATORY
Short Title: BRAZILIAN WETLANDS LAB
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course consists of a 2-week trip to Brazil to examine first-hand the ecology of the largest wetland ecosystem on earth - the Pantanal. Days will be spent in the field making observations and collecting data; lectures in the evenings will cover topics including freshwater ecology, seasonal flooding dynamics, community ecology of wetland species, symbiosis, geology, environmental management, ecotourism, and conservation biology. Includes a course fee that covers all transportation, accommodations, and meals. Distribution Credit for BIOS 320 no longer eligible beginning Fall 2019. Recommended Prerequisite(s): EBIO 213 or BIOS 213

BIOS 321 - ANIMAL BEHAVIOR
Short Title: ANIMAL BEHAVIOR
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (EBIO 202 or BIOS 202)
Description: Evolutionary theory is used to evaluate behavioral adaptations of organisms to their environment.

BIOS 322 - CONSERVATION BIOLOGY LAB
Short Title: CONSERVATION BIOLOGY LAB
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOL 211 or BIOS 211
Description: This course will give students hands-on experiences in the practice of conservation biology through authentic projects related to prioritization and design of nature preserves, restoration of natural environments, and for monitoring threatened and endangered species in the Houston area. BIOS 423 may be taken concurrently with EBIO 322. Graduate/Undergraduate Equivalency: BIOS 522. Mutually Exclusive: Cannot register for BIOS 322 if student has credit for BIOS 522.
BIOS 323 - CLIMATE CHANGE AND HUMAN EVOLUTION: AFRICAN SAVANNA ECOLOGY AND PALEOECOLOGY
Short Title: AFRICAN SAVANNA ECOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This short, intensive summer field course offers students the unique opportunity for first-hand examination of the ecology of the east African savanna biome both today and throughout the past 15 million years. The major focus of the course is to understand how changes in climate impacted the flora and fauna of the region in ways that influenced the evolution of hominins, the group that includes modern humans, as well as the effects of recent and ongoing climate change on both wildlife and people. Students will learn methodologies and gain practical experience in the fields of ecology, paleontology, and paleoanthropology. Activities will include observing wildlife in natural ecosystems including the Ngorongoro Conservation Area and Serengeti National Park and participating in paleontological excavations at Olduvai Gorge—all UNESCO World Heritage Sites in northern Tanzania. By examining both the dynamics of the modern African savanna ecosystem and the paleoecology of the region, this course provides both a way of understanding our origins as well as a glimpse into our possible future in a rapidly changing world. Instructor Permission Required. Cross-list: ANTH 323. Mutually Exclusive: Cannot register for BIOS 323 if student has credit for BIOS 523.

BIOS 326 - INSECT BIOLOGY
Short Title: INSECT BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (EBIO 202 or BIOS 202)
Description: This course provides an overview of the biology of insects, including insect anatomy, ecology, evolution, and vector diseases. Lectures, group activities, and discussions will also allow a synthetic understanding of the biological, economic, and cultural importance of insects.

BIOS 327 - BIOLOGICAL DIVERSITY
Short Title: BIOLOGICAL DIVERSITY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (EBIO 202 or BIOS 202) and (EBIO 213 or BIOS 213)
Description: This laboratory course focuses on the theory and practice of estimating biodiversity. Students work in groups to design, execute, and communicate the results of a systematic survey of particular taxonomic groups in the Big Thicket National Preserve in east Texas. Class has required meetings outside of regular class time.

BIOS 329 - ANIMAL DIVERSITY
Short Title: ANIMAL DIVERSITY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 201 or BIOS 201 or EBIO 202 or BIOS 202
Description: The evolution and systematics of the animal kingdom with consideration of functional anatomy, comparative physiology, behavior, medical implications and resource management. Graduate/Undergraduate Equivalency: BIOS 529. Mutually Exclusive: Cannot register for BIOS 329 if student has credit for BIOS 529/EBIO 529.

BIOS 330 - INSECT BIOLOGY LAB
Short Title: INSECT BIOLOGY LAB
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (EBIO 202 or BIOS 202) or BIOS 326 (may be taken concurrently)
Description: Lab associated with BIOS 326. Laboratory and field exercises provide hands-on experience with the collection and curation of insect specimens. Class has required meetings outside of regular class time.

BIOS 332 - ECOLOGY
Short Title: ECOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (EBIO 202 or BIOS 202)
Description: Study of population dynamics, species interactions, plant and animal community organization, and ecosystem function. Graduate/Undergraduate Equivalency: BIOS 532. Mutually Exclusive: Cannot register for BIOS 332 if student has credit for BIOS 532.

BIOS 334 - EVOLUTION
Short Title: EVOLUTION
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): EBIO 202 or BIOS 202
Description: Principles of biological evolution. Topics include natural selection, adaptation, molecular evolution, formation of new species, the fossil record, biogeography, and principles of classification. Graduate/Undergraduate Equivalency: BIOS 534. Mutually Exclusive: Cannot register for BIOS 334 if student has credit for BIOS 534.
**BIOS 336 - PLANT DIVERSITY**
*Short Title:* PLANT DIVERSITY  
*Department:* Biosciences  
*Grade Mode:* Standard Letter  
*Course Type:* Lecture  
*Credit Hours:* 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** EBIO 213 or BIOS 213  
**Description:** The evolution, systematics, and ecology of plants, with emphasis on flowering plants and biodiversity.

**BIOS 337 - FIELD BIRD BIOLOGY LAB**
*Short Title:* FIELD BIRD BIOLOGY LAB  
*Department:* Biosciences  
*Grade Mode:* Standard Letter  
*Course Type:* Laboratory  
*Credit Hour:* 1  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** EBIO 213 or BIOS 213  
**Description:** The overarching goal of this course is to gain an understanding of the many ways in which birds have contributed to fundamental advances in the fields of ecology and evolutionary biology. Students will also develop basic field bird identification skills and an aesthetic appreciation for birds. The course will include 6 field outings that will take place on Saturday mornings scattered through the semester.

**BIOS 338 - ANALYSIS AND VISUALIZATION OF BIOLOGICAL DATA**
*Short Title:* BIO DATA ANALYSIS  
*Department:* Biosciences  
*Grade Mode:* Standard Letter  
*Course Type:* Lecture  
*Distribution Group:* Distribution Group III  
*Credit Hours:* 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** EBIO 213 or BIOS 213  
**Description:** This course addresses how to analyze, visualize and draw conclusions from biological data. It introduces basic concepts in statistics interwoven with training in data analysis using the R computing environment. Students will learn to identify underlying data structures and wrangle data. Students will also learn to effectively convey results using statistical graphics. Topics include basic R programming, data exploration, statistical modeling, parameter estimation and interpretation, and model comparison. This class particularly focuses on biological data. Graduate/Undergraduate Equivalency: BIOS 538. Mutually Exclusive: Cannot register for BIOS 338 if student has credit for BIOS 538.

**BIOS 339 - PLANT DIVERSITY LAB**
*Short Title:* PLANT DIVERSITY LAB  
*Department:* Biosciences  
*Grade Mode:* Standard Letter  
*Course Type:* Laboratory  
**Credit Hour:** 1  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** (BIOS 201 or BIOC 201) and (BIOS 202 or EBIO 202)  
**Description:** This course will complement the BIOS 336 course by providing hands-on experience in the science of botany. Students will become familiar with the anatomy, physiology, evolution and biodiversity of plants through lab dissections, microscopy, and field observations.

**BIOS 340 - INTEGRATIVE ANIMAL PHYSIOLOGY**
*Short Title:* INTEGRATIVE ANIMAL PHYSIOLOGY  
*Department:* Biosciences  
*Grade Mode:* Standard Letter  
*Course Type:* Lecture  
*Credit Hours:* 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** (BIOS 201 or BIOC 201) and (BIOS 202 or EBIO 202)  
**Description:** This course takes a comparative approach to investigate animal physiology of vertebrates. Students learn how animals are adapted to their environments, including how they meet their energy needs, take up and transport oxygen, and maintain hydration and salt balance. Students read primary literature to explore survival in extreme environments. Mutually Exclusive: Cannot register for BIOS 340 if student has credit for BIOS 540, BIOC 335, BIOC 536. Graduate/Undergraduate Equivalency: BIOS 540.

**BIOS 341 - CELL BIOLOGY**
*Short Title:* CELL BIOLOGY  
*Department:* Biosciences  
*Grade Mode:* Standard Letter  
*Course Type:* Lecture  
*Distribution Group:* Distribution Group III  
*Credit Hours:* 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** BIOC 201 or BIOS 201  
**Description:** Molecular mechanisms of eukaryotic cell function. Structure, function, and biogenesis of all subcellular organelles. Cell-cell communication, cytoskeleton assembly and function, cell cycle control, and cell-cell adhesions. Emphasis will be on cytoplasmic events; molecular studies of transcription are taught in BIOS 302 and BIOS 344.
BIOS 344 - MOLECULAR BIOLOGY AND GENETICS  
**Short Title:** MOLECULAR BIOLOGY & GENETICS  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Distribution Group:** Distribution Group III  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Description:** Mendelian genetics, population genetics, mapping, gene expression and regulation, genetic engineering, DNA replication and recombination, human genetics, genetic disease and gene therapy.

BIOS 350 - ADVANCED LABORATORY IN BIOSCIENCES  
**Short Title:** ADVANCED LAB IN BIOSCIENCES  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Laboratory  
**Credit Hours:** 1-2  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Description:** In BIOS 350 students conduct investigative studies in the areas of biological science, neuroscience, natural history, ecology, evolution, and/or animal behavior. These studies may encompass original research, instructor-designed experiments, and/or online projects with curated data, depending on the availability of in-person laboratory and/or field experiences. BIOS 350 further advances basic laboratory and/or field experiences, record keeping abilities, and technical communication skills that were introduced and/or reinforced in the intermediate lab course. This course is available to students who cannot reasonably be expected to complete an advanced lab requirement for any major concentration in Biosciences and will substitute for that course requirement, subject to approval by the instructors of the course to be replaced and the BioSciences Undergraduate Curriculum Committee. Registration for this course will be by “instructor permission only.” This course will be either a half or full semester course, credit hours: 1-2. Instructor Permission Required.

BIOS 352 - PHYSICAL CHEMISTRY FOR THE BIOSCIENCES  
**Short Title:** PHYS CHEM FOR BIOSCIENCES  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** (PHYS 126 or PHYS 102 or PHYS 112 or PHYS 142) and (BIOS 301 or BIOS 301)  
**Description:** Study of selected aspects of physical chemistry as it relates to the biosciences. Includes thermodynamics, reaction rate theory, quantum mechanics, and atomic and molecular structure.

BIOS 353 - MOLECULAR BASIS FOR INFECTIOUS DISEASE  
**Short Title:** MOL BASIS: INFECTIOUS DISEASE  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** BIOS 301 (may be taken concurrently)  
**Description:** BIOS 353 is a one-semester course that surveys a representative group of bacterial and viral infectious diseases and the medical countermeasures used to defeat them or in some cases just keep them in check. The course begins with a brief history of how infectious diseases have shaped human history and progresses to present day challenges including emerging pathogens both natural and man-made. We will do deep dives of several important pandemic diseases to understand their epidemiological contexts, pathogenesis and disease states. We will then examine how vaccines, antiviral and antimicrobial strategies work to protect human health at the molecular level. Importantly, we will then examine how molecular evolution provides adaptation to various biomedical interventions and why the fight against infectious diseases cannot be easily won. Prerequisite BIOS 301 (may be taken concurrently) Graduate/Undergraduate Equivalency: BIOS 553.

BIOS 368 - CONCEIVING AND MISCONCEIVING THE MONSTROUS IN FICTION AND IN ART, IN MEDICINE AND IN BIOSCIENCE  
**Short Title:** MONSTER  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Seminar  
**Distribution Group:** Distribution Group III  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Description:** Across variations of life, we draw boundaries between normal, not normal, and monstrous. From the Biosciences to the Creative Arts, our conceptions of the “monstrous” illuminate our identity, perceptions, and fears. Discussion-based class accessible to people of all backgrounds and interests.

BIOS 370 - CURRENT BIO SCIENCES AND HEALTH POLICY TOPICS  
**Short Title:** CURRENT HEALTH POLICY  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** BIOS 201 or BIOS 122  
**Description:** Public policy shapes research and healthcare determine what can and cannot be done. Bioscience and health research also can be used to develop and shape evidence-based public policy. Students will learn how to analyze the diverse ways policy is developed and enacted at local, state, national and international levels. Graduate/Undergraduate Equivalency: BIOS 670. Mutually Exclusive: Cannot register for BIOS 370 if student has credit for BIOS 670.
BIOS 371 - SEMINAR IN CONTEMPORARY BIOLOGICAL AND BIOMEDICAL RESEARCH
Short Title: BIOMEDICAL RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 341 or BIOS 341 (may be taken concurrently) or BIOC 301 or BIOS 301 (may be taken concurrently)
Description: This course will offer students a close-up look at an area of contemporary biological and biomedical research in a small-group seminar setting. Each seminar will focus on a different area of research through reading and discussion of recent research articles in that focus area. The faculty discussion leader for each seminar will be drawn from Baylor College of Medicine, UT Health Science Center, MD Anderson Cancer Center, Rice and others. Prereqs may be taken concurrently. Please consult the course website for a complete listing of seminars offered each semester. Please refer to the following link for additional information: http://www.bioc.rice.edu/bioc371. Instructor Permission Required. Recommended Prerequisite(s): Students should check the courses website for additional prerequisites, notes from the instructor, and other information specific to each section. Repeatable for Credit.

BIOS 372 - IMMUNOLOGY
Short Title: IMMUNOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 201 or BIOS 201) and (EBIO 202 or BIOS 202)
Description: Cellular and molecular basis of innate and adaptive immune function in mammals. Graduate/Undergraduate Equivalency: BIOS 572. Mutually Exclusive: Cannot register for BIOS 372 if student has credit for BIOC 372/BIOS 573.

BIOS 373 - CORAL REEF ECOSYSTEMS
Short Title: CORAL REEF ECOSYSTEMS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): EBIO 202 or BIOS 202
Description: This three credit lecture course introduces students to a complex, dynamic and sensitive ecosystem: coral reefs. We will explore the biotic and abiotic components of coral reefs; how reef organisms interact with each other and the environment, and the factors that contribute to reef construction and decline over time and space. Graduate/Undergraduate Equivalency: BIOS 573.

BIOS 374 - GLOBAL CHANGE BIOLOGY
Short Title: GLOBAL CHANGE BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 202 or EBIO 202
Description: This course is designed to give students a broad overview of global change biology. Lectures, discussions and group activities will support an integrative understanding of how biological systems (across various levels and taxa) respond over space and time to environmental change. Graduate/Undergraduate Equivalency: BIOS 574. Mutually Exclusive: Cannot register for BIOS 374 if student has credit for BIOS 574.

BIOS 378 - MYOLOGY
Short Title: MYOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 201 or BIOS 201
Description: Cellular and molecular mechanisms of neural function, including membrane and axon physiology, synaptic transmission and plasticity, sensory transduction and processing. Graduate/Undergraduate Equivalency: BIOS 585.

BIOS 379 - TRANSFER CREDIT IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: TRAN CREDIT BIOCHEM&CELL BIO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 201 or BIOS 201
Description: For transfer of courses which have no current equivalent in the Rice curriculum, but which can be counted as 300 level lecture courses in biochemistry, cell biology, and genetics. Repeatable for Credit.

BIOS 380 - TRANSFER CREDIT IN ECOLOGY AND EVOLUTIONARY BIOLOGY
Short Title: TRAN CREDIT ECOL&EVOLUTION
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOC 201 or BIOS 201
Description: For transfer of courses which have no current equivalent in the Rice curriculum, but which can be counted as 300 level lecture courses in ecology and evolutionary biology. Repeatable for Credit.
BIOS 393 - LABORATORY TRANSFER CREDIT IN BIOSCIENCES
Short Title: LAB TRANSFER CREDIT
Department: Biosciences
Grade Mode: Transfer Courses
Course Type: Laboratory
Credit Hours: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: For transfer of an advanced laboratory course in the biosciences that has no current equivalent in the Rice Biosciences curriculum. Any student may receive a maximum of one credit of BIOS 393.

BIOS 401 - UNDERGRADUATE HONORS RESEARCH
Short Title: UNDERGRADUATE HONORS RESEARCH
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 310
Corequisite: BIOS 411
Description: The Biosciences Honors Research Program offers our seniors and advanced juniors the opportunity to perform a two-semester, individual research project in a research laboratory in Biosciences or an approved off-campus site and offers opportunities for students to develop their written and oral scientific communication skills. Students registering for BIOS 401 are expected to take BIOS 402 the following semester. Each semester, students are expected to average 15 hours per week in research (laboratory) and communication skills activities (scheduled through the companion seminar co-requisite). In BIOS 401, students will prepare regular progress reports, attend lab meetings, and write an end-of-semester short paper (at least 5 pages) on their work. Must register for co-requisite BIOS 411. Instructor Permission Required.

BIOS 402 - UNDERGRADUATE HONORS RESEARCH
Short Title: UNDERGRADUATE HONORS RESEARCH
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 401
Corequisite: BIOS 412
Description: The Biosciences Honors Research Program offers our seniors and advanced juniors the opportunity to perform a two-semester, individual research project in a research laboratory in Biosciences or an approved off-campus site and offers opportunities for students to develop their written and oral scientific communication skills. Students registering for BIOS 401 are expected to take BIOS 402 the following semester. Each semester, students are expected to average 15 hours per week in research (laboratory) and communication skills activities (scheduled through the companion seminar co-requisite). In BIOS 402, students will continue their research, prepare regular progress reports, attend lab meetings, write a final research summary document, and present a poster at the Rice Undergraduate Research Symposium. Must register for co-requisite BIOS 412. Instructor Permission Required.

BIOS 405 - PHYSICAL BIOLOGY
Short Title: PHYSICAL BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 410 or MATH 211
Description: This course provides a biophysical view of living systems, from the subcellular to the multicellular scales. Topics include: biomolecular dynamics, cellular biomechanics, cell motility and cell division, calcium signaling, action potential propagation, and tissue organization. Graduate/Undergraduate Equivalency: BIOS 505.

BIOS 410 - STEM CELL BIOLOGY
Short Title: STEM CELL BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 341 or MATH 211
Description: This course will introduce students to modern topics in stem cell biology, teach students to critically evaluate primary literature, and teach students to synthesize research ideas into review articles and grant proposals. This is a literature and discussion-based course and will require reading 2-3 articles from the primary literature per week. Graduate/Undergraduate Equivalency: BIOS 510.

BIOS 411 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 0
Course Level: Undergraduate Upper-Level
Corequisite: BIOS 401
Description: This companion seminar requires attendance at course meetings and a formal scientific presentation of research performed while enrolled in the Biosciences Honors Research Program. The communication enrichment component, which includes an oral presentation and written work with the instructor and peers, meets in person for ~8 hrs each semester. Must register for co-requisite BIOS 401.
BIOS 412 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 0
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 401 and BIOS 411
Corequisite: BIOS 402
Description: This companion seminar requires attendance at course meetings and a formal scientific presentation of research performed while enrolled in the Biosciences Honors Research Program. The communication enrichment component, which includes an oral presentation and written work with the instructor and peers, meets in person for ~8 hrs each semester. Must register for co-requisite BIOS 402.

BIOS 417 - EXPERIMENTAL CELL AND MOLECULAR NEUROSCIENCE
Short Title: ADV EXPERIMENTAL NEUROSCIENCE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOS 212 or BIOC 212) and (CAAM 210 or CMOR 220) and (STAT 305 or STAT 310 or ECON 307 or STAT 312) and (BIOS 385 or BIOC 385 or NEUR 385)
Description: Students will explore the molecular properties of neurons and related cells using standard techniques in the field. Experiments will include manipulating exocytosis, examining protein expression levels in different brain regions of mice, and culturing primary neurons. Lessons will also include a brief lecture/discussion on fundamental principles within cellular and molecular neuroscience.

BIOS 420 - MOLECULAR BASIS OF DISEASES
Short Title: MOLECULAR BASIS OF DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 or BIOC 301
Description: The course intends to provide in-depth knowledge of the molecular basis of human diseases. We will discuss: 1) Different types of genetic variations that may lead to human diseases; 2) The various approaches to investigate the molecular basis of human diseases; 3) The molecular and cellular consequences of disease-associated genetic variations; 4) The physiological and environmental causes of genetic variations; 5) The molecular basis for disease diagnosis and treatments. We will mainly focus on molecular mechanisms of inherent genetic diseases, neurodegenerative diseases, cancer and environmentally induced diseases. This will be a combined lecture/discussion course. The class materials are mainly based on preliminary literatures and case studies. Students are expected to actively participate in discussion in class and to give presentations and lectures based on research paper. Graduate/Undergraduate Equivalency: BIOS 520.

BIOS 423 - CONSERVATION BIOLOGY
Short Title: CONSERVATION BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOS 201 or BIOS 201) and (EBIO 202 or BIOS 202) and (EBIO 325 or BIOS 332)
Description: This course is designed to give students a broad overview of conservation biology. Lecture and discussions will focus on conservation issues such as biodiversity, extinction, management, sustained yield, invasive species and preserve design. Counts as a capstone course for the major concentration in Ecology and Evolutionary Biology. Graduate/Undergraduate Equivalency: BIOS 523.

BIOS 424 - MICROBIAL PHYSIOLOGY AND GENETICS
Short Title: MICROBIAL PHYSIOLOGY&GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 or BIOC 341 or BIOS 344
Description: Bacteria represent the most diverse group of organisms, exhibiting an extraordinary variety of cellular functions and structures. This course delves into the workings of bacterial cells, focusing on their structural components, genetics, and biochemistry. Students will gain an introduction to the fundamentals of microbiology, as well as explore contemporary topics from the latest scientific literature. Graduate/Undergraduate Equivalency: BIOS 524. Mutually Exclusive: Cannot register for BIOS 424 if student has credit for BIOS 524.

BIOS 425 - PLANT MOLECULAR GENETICS AND DEVELOPMENT
Short Title: PLANT MOLECULAR GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 or BIOC 301 or BIOS 341 or BIOC 341
Description: Novel aspects of plant biology and development with emphasis on molecular and genetic mechanisms. Plant responses to the environment and the use of bioengineering and other means to develop new plant products will also be covered. Graduate/Undergraduate Equivalency: BIOS 525. Mutually Exclusive: Cannot register for BIOS 425 if student has credit for BIOS 525.
BIOS 431 - EMERGING INFECTIOUS DISEASES
Short Title: EMERGING INFECTIOUS DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 385 or BIOC 385 or NEUR 380 and (BIOS 201 or BIOC 201) and (BIOS 212 or BIOC 212) and (MATH 102 or MATH 106) and (STAT 305 or STAT 312 or STAT 310)
Description: In this course, students will explore the basic ecological and evolutionary principles that determine the emergence and re-emergence of infectious diseases. Using a mix of lectures, thought provoking discussion of contemporary research, and hand on lab exercises, the student will gain an intuitive understanding of what factors determine the population dynamics of pathogens and their hosts and how we can predict and control them. We will start by learning how we can quantify and model disease transmission, and then dive into the many factors that influence how diseases spread within and across species to cause epidemics, and explore what factors drive evolution of disease virulence and host defenses. We will end by exploring different control efforts to limit the spread of emerging and re-emerging infectious diseases and discuss how these efforts depend on the intricate connections between people, animals, plants, and their shared environment (One Health).

BIOS 432 - RESEARCH SEMINAR IN TRANSLATIONAL NEUROSCIENCE
Short Title: MEDICAL NEUROSCIENCE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 385 or BIOC 385 or NEUR 380 and (BIOS 341 or BIOC 341 or BIOS 301 or BIOC 301 or BIOS 344 or BIOC 344)
Description: An advanced undergraduate and graduate level course, dedicated to analysis and evaluation of scientific inquiry into animal development and neurodevelopment. Textbook based lectures and discussions based on primary scientific literature are used to exemplify and evaluate concepts and methodology. Writing assignments, quizzes, midterm and final exam will be used to evaluate performance. Graduate/Undergraduate Equivalency: BIOS 543.

BIOS 433 - DEVELOPMENTAL NEUROBIOLOGY
Short Title: NEURODEVELOPMENT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 385 or BIOC 385 or NEUR 380 and (BIOS 385 or BIOC 385 or NEUR 380) and (PSYC 380 or NEUR 380 or BIOC 380 or NEUR 385) and (PSYC 203 or BIOS 321 or EBIOL 321) and (STAT 305 or STAT 310 or ECON 307 or STAT 312)
Description: This will be a combined lecture/discussion course on historical and current methods in behavioral neuroscience using primary literature. Topics will include the molecular basis of memory, genetic impacts on cognition, and possible epigenetic influences on behavior. Special emphasis will be placed on discussing different model organism and their benefits/drawbacks in neuroscience research.

BIOS 444 - ADVANCED MOLECULAR BIOLOGY AND GENETICS
Short Title: ADV MOLECULAR BIOL & GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 344
Description: Studies of the mechanisms of genetic processes, focusing on analysis of the research literature. Includes student presentations (both oral and written) of research data and analyses. Subjects covered fall into nine general categories: I. Eukaryotic Gene Regulation; II. Genomics; III. Genetic Disease; IV. Gene Therapy; V. Bacterial defense systems against phage; VI. Genome editing; VII. Gene Drives; VIII. Mitosis and Meiosis. IX. Classical papers.
BIOS 447 - EXPERIMENTAL BIOLOGY AND THE FUTURE OF MEDICINE
Short Title: BIOLOGY AND MEDICINE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 or BIOC 301 or BIOS 341 or BIOC 341 or BIOS 344 or BIOC 344
Description: Current biological methods offer the potential to transform health care. We will examine the biology and methodology of emergent health care technologies such as stem cell therapy and personal genome sequencing to understand their potential to impact human health. Graduate/Undergraduate Equivalency: BIOS 547.

BIOS 449 - ADVANCED CELL AND MOLECULAR NEUROSCIENCE
Short Title: ADV CELL AND MOLECULAR NEURO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 385 or BIOS 385 or NEUR 385) and (BIOS 201 or BIOC 201) and (BIOC 211 or BIOC 211 or BIOC 212 or BIOC 212) and (MATH 102 or MATH 106) and (STAT 305 or STAT 310 or ECON 307 or STAT 312)
Description: This course will be an overview of advanced principles and techniques in cell and molecular neuroscience; subjects will include bioelectricity, cellular signaling, and the molecular mechanics of neuronal plasticity. The class will primarily be lecture driven. However, there will be seminar component – students will review primary scientific literature, discuss it in small groups, and present their findings. Graduate/Undergraduate Equivalency: BIOS 549. Recommended Prerequisite(s): PSYC 380 or BIOC 380 or NEUR 380 Mutually Exclusive: Cannot register for BIOS 449 if student has credit for BIOS 549.

BIOS 450 - VIRUSES AND INFECTIOUS DISEASES
Short Title: VIRUSES & INFECTIOUS DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 or BIOC 301 or BIOS 341 or BIOC 341
Description: Animal viruses, especially those relevant to human health, will be discussed. Topics primarily focus on virus structure and the molecular biology of the virus life cycle. Practical issues such as the history of viral diseases, clinical manifestations, laboratory diagnosis, management and prevention will also be discussed. Graduate/Undergraduate Equivalency: BIOS 550.

BIOS 460 - CANCER BIOLOGY
Short Title: CANCER BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 301 or BIOS 301) and (BIOS 341 or BIOC 341 or BIOS 344 or BIOC 344) and (MATH 102 or MATH 106)
Description: Provides an integrated lecture series summarizing current knowledge in cancer biology and integrating current literature with basic concepts. Topics include: statistics of incidence/survival, types of cancer, pathology, the process of carcinogenesis and sources of carcinogens, genetic and epigenetic mechanisms and consequences, cancer progression, metastasis and current treatment options. Students will learn to use online databases to develop independent strategies for analyzing datasets. There will be several writing assignments and in class oral presentations of research articles. Graduate/Undergraduate Equivalency: BIOS 560. Mutually Exclusive: Cannot register for BIOS 460 if student has credit for BIOS 560.

BIOS 470 - COMPUTATION WITH BIOLOGICAL DATA
Short Title: COMPUTATION WITH BIOL DATA
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 301 or BIOS 301 or BIOC 341 or BIOS 341 or BIOC 344 and (MATH 102 or MATH 106)
Description: This course will teach programming and analysis techniques essential for modern research in the biological sciences. Students will learn the basics of programming in the MATLAB or Python scripting languages and applications to analyzing biological data. There will be a particular focus on quantitative image and sequence analysis. Graduate/Undergraduate Equivalency: BIOS 570. Mutually Exclusive: Cannot register for BIOS 470 if student has credit for BIOS 570.

BIOS 477 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar, Internship/Practicum, Lecture/Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Topics and credit hours may vary each semester. Contact department for current semester’s topic(s). Repeatable for Credit.

BIOS 478 - EXPERIMENTAL BIOLOGY AND THE FUTURE OF MEDICINE
Short Title: EXPERIMENTAL BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 or BIOC 301 or BIOS 341 or BIOC 341 or BIOS 344 or BIOC 344
Description: Current biological methods offer the potential to transform health care. We will examine the biology and methodology of emergent health care technologies such as stem cell therapy and personal genome sequencing to understand their potential to impact human health. Graduate/Undergraduate Equivalency: BIOS 547.

BIOS 479 - ADVANCED CELL AND MOLECULAR NEUROSCIENCE
Short Title: ADVANCED CELL AND MOLECULAR NEURO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (BIOC 385 or BIOS 385 or NEUR 385) and (BIOS 201 or BIOC 201) and (BIOC 211 or BIOC 211 or BIOC 212 or BIOC 212) and (MATH 102 or MATH 106) and (STAT 305 or STAT 310 or ECON 307 or STAT 312)
Description: This course will be an overview of advanced principles and techniques in cell and molecular neuroscience; subjects will include bioelectricity, cellular signaling, and the molecular mechanics of neuronal plasticity. The class will primarily be lecture driven. However, there will be seminar component – students will review primary scientific literature, discuss it in small groups, and present their findings. Graduate/Undergraduate Equivalency: BIOS 549. Recommended Prerequisite(s): PSYC 380 or BIOC 380 or NEUR 380 Mutually Exclusive: Cannot register for BIOS 449 if student has credit for BIOS 549.

BIOS 480 - VIRUSES AND INFECTIOUS DISEASES
Short Title: VIRUSES & INFECTIOUS DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): BIOS 301 or BIOC 301 or BIOS 341 or BIOC 341
Description: Animal viruses, especially those relevant to human health, will be discussed. Topics primarily focus on virus structure and the molecular biology of the virus life cycle. Practical issues such as the history of viral diseases, clinical manifestations, laboratory diagnosis, management and prevention will also be discussed. Graduate/Undergraduate Equivalency: BIOS 550.
BIOS 481 - MOLECULAR AND CELLULAR BIOPHYSICS  
**Short Title:** MOLECULAR CELLULAR BIOPHYSICS  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** BIOS 301 or BIOS 352  
**Description:** Focus on background principles of common biophysical methods used to uncover the structure and function of biological macromolecules and assemblies, and how this information can be used to describe biological mechanisms that impact animal physiology. Topics covered include spectroscopic methods (ex. absorption, fluorescence, circular dichroism, EPR, NMR), transport processes, sedimentation, calorimetry, mass spectrometry, crystallography, cryo-electron microscopy, atomic force microscopy, ligand-protein interactions, protein folding, single molecule detection, and functional genomics. Biological examples will be used to demonstrate merits and complementarity in each of the biophysical methods, with applications in vitro and in intact cellular systems. Specific emphasis will be given to mechanism in the nervous system. Graduate/Undergraduate Equivalency: BIOS 551.

BIOS 482 - STRUCTURAL BIOLOGY  
**Short Title:** STRUCTURAL BIOLOGY  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** (BIOC 301 or BIOS 301) and (PHYS 101 or PHYS 125) and (PHYS 102 or PHYS 126)  
**Description:** Structural biology plays an important role in defining atomic structures of biomolecules and understanding relationships between structure, dynamics and function in living systems. This course will give an introduction to techniques of determining biomolecular structures, X-ray crystallography, NMR, and cryoelectron microscopy and discuss striking examples of the power of structural biology. Graduate/Undergraduate Equivalency: BIOS 552.

BIOS 495 - SEMINAR: TOPICS IN ENVIRONMENTAL SCIENCE  
**Short Title:** TOPICS: ENVIRONMENTAL SCIENCE  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Seminar  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Description:** This course provides an integration of interdisciplinary topics that span environmental sciences. Topics will vary depending upon the interests and needs of both students and faculty. Cross-list: EEPS 495.

BIOS 505 - PHYSICAL BIOLOGY  
**Short Title:** PHYSICAL BIOLOGY  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Graduate level students.  
**Course Level:** Graduate  
**Description:** Basic introduction to a biophysical view of living systems, from the subcellular to the multicellular scales. Topics include: biomolecular dynamics, cellular biomechanics, cell motility and cell division, calcium signaling, action potential propagation, and tissue organization. Cross-list: BIOE 502, SSPB 501. Graduate/Undergraduate Equivalency: BIOS 405.

BIOS 510 - STEM CELL BIOLOGY  
**Short Title:** STEM CELL BIOLOGY  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Graduate level students.  
**Course Level:** Graduate  
**Description:** This course will introduce students to modern topics in stem cell biology, teach students to critically evaluate primary literature, and teach students to synthesize research ideas into review articles and grant proposals. This is a literature and discussion-based course and will require reading 2-3 articles from the primary literature per week. Graduate/Undergraduate Equivalency: BIOS 410.

BIOS 520 - MOLECULAR BASIS OF DISEASES  
**Short Title:** MOLECULAR BASIS OF DISEASES  
**Department:** Biosciences  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Graduate level students.  
**Course Level:** Graduate  
**Description:** The course intends to provide in-depth knowledge of the molecular basis of human diseases. We will discuss: 1) Different types of genetic variations that may lead to human diseases; 2) The various approaches to investigate the molecular basis of human diseases; 3) The molecular and cellular consequences of disease-associated genetic variations; 4) The physiological and environmental causes of genetic variations; 5) The molecular basis for disease diagnosis and treatments. We will mainly focus on molecular mechanisms of inherent genetic diseases, neurodegenerative diseases, cancer and environmentally induced diseases. This will be a combined lecture/discussion course. The class materials are mainly based on preliminary literatures and case studies. Students are expected to actively participate in discussion in class and to give presentations and lectures based on research paper. Graduate/Undergraduate Equivalency: BIOS 420.
BIOS 524 - MICROBIAL PHYSIOLOGY AND GENETICS
Short Title: MICROBIAL PHYSIOLOGY & GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Bacteria represent the most diverse group of organisms, exhibiting an extraordinary variety of cellular functions and structures. This course delves into the workings of bacterial cells, focusing on their structural components, genetics, and biochemistry. Students will gain an introduction to the fundamentals of microbiology, as well as explore contemporary topics from the latest scientific literature. Graduate/Undergraduate Equivalency: BIOS 424. Mutually Exclusive: Cannot register for BIOS 524 if student has credit for BIOS 424.

BIOS 525 - PLANT MOLECULAR GENETICS AND DEVELOPMENT
Short Title: PLANT MOLECULAR GENETICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Novel aspects of plant biology and development with emphasis on molecular and genetic mechanisms. Plant responses to the environment and the use of bioengineering and other means to develop new plant products will also be covered. Graduate/Undergraduate Equivalency: BIOS 425. Mutually Exclusive: Cannot register for BIOS 525 if student has credit for BIOS 425.

BIOS 528 - BRAINSTEM - TEACHING STEM THROUGH NEUROSCIENCE
Short Title: BRAINSTEM
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Internship/Practicum
Credit Hour: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: BrainSTEM is a service organization that teaches STEM subjects through the lens of neuroscience. We perform hands-on, small-group activities with ~45 students per week. This course will prepare you to communicate science in a both effective and entertaining manner, as well as build your skills in managing small groups. More information can be found at 'www.brainstem.club.' Graduate/Undergraduate Equivalency: BIOS 128. Mutually Exclusive: Cannot register for BIOS 528 if student has credit for BIOS 128. Repeatable for Credit.

BIOS 529 - ANIMAL DIVERSITY
Short Title: ANIMAL DIVERSITY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: The evolution and systematics of the animal kingdom with consideration of functional anatomy, comparative physiology, behavior, medical implications and resource management. Graduate/Undergraduate Equivalency: BIOS 329. Mutually Exclusive: Cannot register for BIOS 529 if student has credit for BIOC 329/BIOS 329.
BIOS 530 - LAB MODULE IN NMR SPECTROSCOPY AND MOLECULAR MODELING
Short Title: LAB MOD NMR SPECTROSCOPY & MOLEC
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOC 481 or BIOS 481 or BIOC 482 or BIOS 482 (may be taken concurrently) or BIOC 551 or BIOS 551
Description: The students will learn to set up, acquire, and process one-dimensional and basic two-dimensional NMR experiments. Spectral interpretation (3D molecular modeling of proteins and nucleic acids) for nucleic acids and proteins using homonuclear and heteronuclear data. Enrollment limited to 12, with priority to graduate students. Offered first half of the semester. BIOS 482/552 may be taken concurrently with BIOS 530.

BIOS 532 - ECOLOGY
Short Title: ECOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Study of population dynamics, species interactions, plant and animal community organization, and ecosystem function. Graduate/Undergraduate Equivalency: BIOS 332. Mutually Exclusive: Cannot register for BIOS 532 if student has credit for BIOS 332.

BIOS 534 - EVOLUTION
Short Title: EVOLUTION
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Principles of biological evolution. Topics include natural selection, adaptation, molecular evolution, formation of new species, the fossil record, biogeography, and principles of classification. Instructor Permission Required. Graduate/Undergraduate Equivalency: BIOS 334. Mutually Exclusive: Cannot register for BIOS 534 if student has credit for BIOS 334.

BIOS 535 - PRACTICAL X-RAY CRYSTALLOGRAPHY
Short Title: PRACT X-RAY CRYSTALLOGRAPHY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOS 552 or BIOS 552 (may be taken concurrently) or BIOC 482 or BIOS 482 (may be taken concurrently)
Description: This is an introduction to macromolecular crystallography with emphasis on crystallization methods, data acquisition, processing and molecular model-building. Approaches to solving structures will be discussed, as well as refinement of molecular models. Offered second half of the semester. Prerequisites are concurrent and may be taken the same semester.

BIOS 537 - ADVANCED STRUCTURAL BIOLOGY SEMINAR
Short Title: ADV STRUCTURAL BIOLOGY SEMINAR
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: One hour seminar course in theoretical and practical aspects of crystallography, primarily as it applies to macromolecular crystallography. Presentations will be given by instructors and students on advanced topics based on published works or original research. Repeatable for Credit.

BIOS 538 - ANALYSIS AND VISUALIZATION OF BIOLOGICAL DATA
Short Title: BIO DATA ANALYSIS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course addresses how to analyze, visualize and draw conclusions from biological data. It introduces basic concepts in statistics interwoven with training in data analysis using the R computing environment. Students will learn to identify underlying data structures and wrangle data. Students will also learn to effectively convey results using statistical graphics. Topics include basic R programming, data exploration, statistical modeling, parameter estimation and interpretation, and model comparison. This class particularly focuses on biological data. Graduate/Undergraduate Equivalency: BIOS 338. Mutually Exclusive: Cannot register for BIOS 538 if student has credit for BIOS 338.
BIOS 540 - INTEGRATIVE ANIMAL PHYSIOLOGY
Short Title: INTEGRATIVE ANIMAL PHYSIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course takes a comparative approach to investigate animal physiology of vertebrates. Students learn how animals are adapted to their environments, including how they meet their energy needs, take up and transport oxygen, and maintain hydration and salt balance. Students read primary literature to explore survival in extreme environments. Mutually Exclusive: Cannot register for BIOS 540 if student has credit for BIOS 340, BIOC 335, BIOC 536. Graduate/Undergraduate Equivalency: BIOS 340.

BIOS 541 - RESEARCH SEMINAR IN ECOLOGY AND EVOLUTIONARY BIOLOGY
Short Title: RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Discussion of individual research or current topics in particular areas. Intended for students conducting research projects with the instructor as advisor. Repeatable for Credit.

BIOS 542 - RESEARCH SEMINAR IN ECOLOGY AND EVOLUTIONARY BIOLOGY
Short Title: RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Research
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Discussion of individual research or current topics in particular areas. Intended for students conducting research projects with the instructor as advisor. Repeatable for Credit.

BIOS 543 - DEVELOPMENTAL NEUROBIOLOGY
Short Title: NEURODEVELOPMENT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: An advanced undergraduate and graduate level course, dedicated to analysis and evaluation of scientific inquiry into animal development. Textbook based lectures and discussions based on primary scientific literature are used to exemplify and evaluate concepts and methodology. Writing assignments, quizzes, midterm and final exam will be used to evaluate performance. Graduate/Undergraduate Equivalency: BIOS 443.

BIOS 547 - EXPERIMENTAL BIOLOGY AND THE FUTURE OF MEDICINE
Short Title: BIOLOGY AND MEDICINE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Current biological methods offer the potential to transform health care. We will examine the biology and methodology of emergent health care technologies such as stem cell therapy and personal genome sequencing to understand their potential to impact human health. Graduate/Undergraduate Equivalency: BIOS 447. Recommended Prerequisite(s): BIOS 301 or BIOC 301 or BIOS 341 or BIOC 341 or BIOS 344 or BIOC 344

BIOS 549 - ADVANCED CELL AND MOLECULAR NEUROSCIENCE
Short Title: ADV CELL AND MOLECULAR NEURO
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course will be an overview of advanced principles and techniques in cell and molecular neuroscience; subjects will include bioelectricity, cellular signaling, and the molecular mechanics of neuronal plasticity. The class will primarily be lecture driven. However, there will be seminar component – students will review primary scientific literature, discuss it in small groups, and present their findings. Graduate/Undergraduate Equivalency: BIOS 449. Mutually Exclusive: Cannot register for BIOS 549 if student has credit for BIOS 449.

BIOS 550 - VIRUSES AND INFECTIOUS DISEASES
Short Title: VIRUSES & INFECTIOUS DISEASES
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Animal viruses, especially those relevant to human health, will be discussed. Topics primarily focus on virus structure and the molecular biology of the virus life cycle. Practical issues such as the history of viral diseases, clinical manifestations, laboratory diagnosis, management and prevention will also be discussed. Graduate/Undergraduate Equivalency: BIOS 450.
BIOS 551 - MOLECULAR AND CELLULAR BIOPHYSICS
Short Title: MOLEC & CELL BIOPHYSICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Focus on background principles of common biophysical methods used to uncover the structure and function of biological macromolecules and assemblies, and how this information can be used to describe biological mechanisms that impact animal physiology. Topics covered include spectroscopic methods (ex. absorption, fluorescence, circular dichroism, EPR, NMR), transport processes, sedimentation, calorimetry, mass spectrometry, crystallography, cryo-electron microscopy, atomic force microscopy, ligand-protein interactions, protein folding, single molecule detection, and functional genomics. Biological examples will be used to demonstrate merits and complementarity in each of the biophysical methods, with applications in vitro and in intact cellular systems. Specific emphasis will be given to mechanism in the nervous system. Graduate/Undergraduate Equivalency: BIOS 481.

BIOS 552 - STRUCTURAL BIOLOGY
Short Title: STRUCTURAL BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Structural biology plays an important role in defining atomic structures of biomolecules and understanding relationships between structure, dynamics and function in living systems. This course will give an introduction to techniques of determining biomolecular structures, X-ray crystallography, NMR, and cryoelectron microscopy and discuss striking examples of the power of structural biology. Graduate/Undergraduate Equivalency: BIOS 482. Recommended Prerequisite(s): BIOS 301 or BIOS 341.

BIOS 553 - MOLECULAR BASIS FOR INFECTIOUS DISEASE
Short Title: MOL BASIS: INFECTIOUS DISEASE
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: BIOS 353/553 is a one-semester course that surveys a representative group of bacterial and viral infectious diseases and the medical countermeasures used to defeat them or in some cases just keep them in check. The course begins with a brief history of how infectious diseases have shaped human history and progresses to present day challenges including emerging pathogens both natural and man-made. We will do deep dives of several important pandemic diseases to understand their epidemiological contexts, pathogenesis and disease states. We will then examine how vaccines, antiviral and antimicrobial strategies work to protect human health at the molecular level. Importantly, we will then examine how molecular evolution provides adaptation to various biomedical interventions and why the fight against infectious diseases cannot be easily won. Graduate/Undergraduate Equivalency: BIOS 353.

BIOS 555 - MOLECULAR MEMBRANE BIOLOGY
Short Title: MOLECULAR MEMBRANE BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): BIOS 341
Description: Molecular mechanisms of eukaryotic cell function. Emphasis on detailed, in-depth mechanistic analysis of specific topics related to compartmentalization and membrane related events. Graduate/Undergraduate Equivalency: BIOS 441. Recommended Prerequisite(s): BIOS 301, BIOS 344 Mutually Exclusive: Cannot register for BIOS 555 if student has credit for BIOS 441/NEUR 441.

BIOS 558 - FUNDAMENTALS OF QUANTITATIVE ENVIRONMENTAL HEALTH RISK ASSESSMENT
Short Title: ENVIRON HEALTH RISK ASSESSMENT
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course provides a baseline understanding of the fundamental tenets of quantitative environmental health risk assessment as it is practiced in the United States, its associated federal and state regulatory drivers, and current hot topics and trends in health risk assessment. It also provides exposure to some of the quantitative and statistical tools that are used in the practice of environmental health risk assessment.

BIOS 559 - SUSTAINABILITY IMPACT ASSESSMENTS
Short Title: SUSTAINABILITY IMPACTS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course is an exciting review of the methodologies involved in conducting Environmental Impact Assessments according to epistemologies from Sustainable Development. EIAs have to be conducted, before permitting is secured, for large projects and programs; such as power plants, highways, pipelines, dams, mines, airports, incinerators and landfills. Most environmental consultancies and government environmental offices will routinely engage experts who are familiar with a comprehensive assessment of local ecosystems around a project or program.
Course URL: profms.rice.edu (http://profms.rice.edu)
BIOS 560 - CANCER BIOLOGY
Short Title: CANCER BIOLOGY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Provides an integrated lecture series summarizing current knowledge in cancer biology and integrating current literature with basic concepts. Topics include: statistics of incidence/survival, types of cancer, pathology, the process of carcinogenesis and sources of carcinogens, genetic and epigenetic mechanisms and consequences, cancer progression, metastasis and current treatment options. Students will learn to use online databases to develop independent strategies for analyzing datasets. There will be several writing assignments and in class oral presentations of research articles. Graduate/Undergraduate Equivalency: BIOS 460. Mutually Exclusive: Cannot register for BIOS 560 if student has credit for BIOS 460.

BIOS 561 - TOPICS IN EVOLUTION (FALL)
Short Title: TOPICS IN EVOLUTION (FALL)
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Review and discussion of the literature on current research in evolution. Repeatable for Credit.

BIOS 562 - TOPICS IN EVOLUTION (SPRING)
Short Title: TOPICS IN EVOLUTION (SPRING)
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Review and discussion of the literature on current research in evolution. Repeatable for Credit.

BIOS 563 - TOPICS IN ECOLOGY (FALL)
Short Title: TOPICS IN ECOLOGY (FALL)
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Review and discussion of the literature on current research in ecology. Repeatable for Credit.

BIOS 564 - TOPICS IN ECOLOGY (SPRING)
Short Title: TOPICS IN ECOLOGY (SPRING)
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Review and discussion of the literature on current research in ecology. Repeatable for Credit.

BIOS 565 - CORE COURSE IN ECOLOGY AND EVOLUTIONARY BIOLOGY
Short Title: CORE COURSE IN ECOLOGY & EVOL
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Survey of topics in ecology and evolution taught by all EEB faculty.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Short Title</th>
<th>Department</th>
<th>Grade Mode</th>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Restrictions</th>
<th>Course Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 573</td>
<td>CORAL REEF ECOSYSTEMS</td>
<td>CORAL REEF ECOSYSTEMS</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>This three credit lecture course introduces students to a complex, dynamic and sensitive ecosystem: coral reefs. We will explore the biotic and abiotic components of coral reefs; how reef organisms interact with each other and the environment, and the factors that contribute to reef construction and decline over time and space. Graduate/Undergraduate Equivalency: BIOS 373.</td>
</tr>
<tr>
<td>BIOS 574</td>
<td>GLOBAL CHANGE BIOLOGY</td>
<td>GLOBAL CHANGE BIOLOGY</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>This course is designed to give students a broad overview of global change biology. Lectures, discussions and group activities will support an integrative understanding of how biological systems (across various levels and taxa) respond over space and time to environmental change. Graduate/Undergraduate Equivalency: BIOS 374. Mutually Exclusive: Cannot register for BIOS 574 if student has credit for BIOS 374.</td>
</tr>
<tr>
<td>BIOS 575</td>
<td>INTRODUCTION TO RESEARCH</td>
<td>INTRODUCTION TO RESEARCH</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Seminar</td>
<td>4</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Introduction of first-year graduate students to the research programs and laboratories of individual faculty members. Open only to BCB graduate students.</td>
</tr>
<tr>
<td>BIOS 580</td>
<td>SUSTAINABLE DEVELOPMENT AND REPORTING</td>
<td>SUSTAINABLE DEVELOPMENT</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Sustainable development is an approach to development based on interacting social, economic, and environmental forces. It is intended as methodology for planning, and a guiding principle for Environmental Health and safety compliance (EHSs) and Corporate Sustainability (CSRs). Students will learn compliance guidelines, risk management, and assessment considerations. Graduate/Undergraduate Equivalency: BIOS 280. Mutually Exclusive: Cannot register for BIOS 580 if student has credit for BIOS 280.</td>
</tr>
<tr>
<td>BIOS 581</td>
<td>GRADUATE SEMINAR IN BIOCHEMISTRY AND CELL BIOLOGY</td>
<td>GRAD SEM BIOCHEM &amp; CELL BIOL</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>A discussion of selected research topics. Required of all Biochemistry and Cell Biology graduate students. Open only to BCB graduate students. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOS 582</td>
<td>GRADUATE SEMINAR IN BIOCHEMISTRY AND CELL BIOLOGY</td>
<td>GRAD SEM BIOCHEM &amp; CELL BIOL</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>A discussion of selected research topics. Required of all Biochemistry and Cell Biology graduate students. Open only to BCB graduate students. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOS 583</td>
<td>MOLECULAR INTERACTIONS</td>
<td>MOLECULAR INTERACTIONS</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>4</td>
<td>Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>First of two integrated classes taken by first-year graduate students in BCB (to be followed by BIOC 588, Cellular Interactions). Covers advanced topics in biochemistry, ranging from protein and nucleic acid synthesis, folding, function, and engineering to allosterity, dynamics, and degradation with an emphasis on fundamental principles, research methodologies, problem solving, and critical analysis of primary literature. Enrollment limited to BCB graduate students.</td>
</tr>
<tr>
<td>BIOS 584</td>
<td>GRADUATE SEMINAR IN ECOLOGY AND EVOLUTIONARY BIOLOGY</td>
<td>GRAD SEM IN ECOL &amp; EVOL BIOL</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Faculty and student presentations on current research. Required of all Ecology &amp; Evolutionary Biology graduate students. Repeatable for Credit.</td>
</tr>
</tbody>
</table>

2023-2024 General Announcements PDF Generated 01/08/24
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Department</th>
<th>Grade Mode</th>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Restrictions</th>
<th>Course Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 585</td>
<td>Cellular and Molecular Mechanisms of the Neuron</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Cellular and molecular mechanisms of neural function, including membrane and axon physiology, synaptic transmission and plasticity, sensory transduction and processing. Graduate/Undergraduate Equivalency: BIOS 385.</td>
</tr>
<tr>
<td>BIOS 586</td>
<td>Graduate Seminar in Ecology and Evolutionary Biology</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Continuation of BIOS 584 in spring semester. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOS 587</td>
<td>Research Design, Proposal Writing, and Professional Development</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Seminar</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Preparation for professional scientific communication with an emphasis on writing research proposals, describing work in progress, and presenting data in context of research goals.</td>
</tr>
<tr>
<td>BIOS 588</td>
<td>Cellular Interactions</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Seminar</td>
<td>4</td>
<td>Enrollment is limited to students with a major in</td>
<td>Graduate</td>
<td>Second of two integrated classes taken by first-year graduate students in BCB (following BIOL 583, Molecular Interactions). Covers advanced topics in genetics, cell biology, and developmental biology, focusing on cellular, tissue, and organismal structure and function with an emphasis on fundamental principles, research methodologies, and critical analysis of primary literature.</td>
</tr>
<tr>
<td>BIOS 589</td>
<td>EEB Outreach Development</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>This course is for Rice students interested in developing life science outreach initiatives that target underserved K-12 students in the Houston area. Goals of the course include developing hands-on teaching modules related to Texas science education standards and expanding graduate student teaching experiences beyond the University setting. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOS 590</td>
<td>Special Topics in Biochemistry and Cell Biology</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Supervised instruction in teaching ecology and evolutionary biology. Repeatable for Credit. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOS 591</td>
<td>Graduate Teaching in Ecology and Evolutionary Biology</td>
<td>Biosciences</td>
<td>Standard Letter</td>
<td>Internship/Practicum</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Supervised instruction in teaching ecology and evolutionary biology. Repeatable for Credit. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOS 592</td>
<td>Topics in Quantitative Biology and Biomedical Informatics (Keck Seminar)</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>A discussion of selected research topics in quantitative biology and biomedical informatics. Repeatable for Credit.</td>
</tr>
<tr>
<td>BIOS 593</td>
<td>Current Topics in Plant Biology</td>
<td>Biosciences</td>
<td>Satisfactory/Unsatisfactory</td>
<td>Seminar</td>
<td>1</td>
<td>Enrollment is limited to students with a major in</td>
<td>Graduate</td>
<td>Discussion of selected research topics in current plant biology literature. Repeatable for Credit.</td>
</tr>
</tbody>
</table>
BIOS 599 - GRADUATE TEACHING IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: GRADUATE TEACHING IN BIOCHEM
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Independent Study
Credit Hour: 1
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Supervised instruction in teaching biochemistry and cell biology. Repeatable for Credit.

BIOS 611 - RESEARCH SEMINAR IN BIOCHEMISTRY AND CELL BIOLOGY
Short Title: RESEARCH SEMINAR
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Discussion of individual research or current topics in particular areas. Intended for students conducting research projects in the lab of the instructor. Repeatable for Credit.

BIOS 670 - CURRENT BIOSCIENCES AND HEALTH POLICY TOPICS
Short Title: CURRENT HEALTH POLICY
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Public policy shapes research and healthcare determine what can and cannot be done. Bioscience and health research also can be used to develop and shape evidence-based public policy. Students will learn how to analyze the diverse ways policy is developed and enacted at local, state, national and international levels. Graduate/Undergraduate Equivalency: BIOS 370. Mutually Exclusive: Cannot register for BIOS 670 if student has credit for BIOS 370.

BIOS 677 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Biosciences
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Laboratory, Lecture, Lecture/Laboratory, Seminar, Independent Study
Credit Hours: 1-4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Topics and credit hours may vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

BIOS 701 - GRADUATE LAB RESEARCH I
Short Title: GRADUATE LAB RESEARCH I
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 2-4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Graduate research in Biochemistry and Cell Biology. Designed for short term laboratory projects for first year graduate students. Repeatable for Credit.

BIOS 702 - GRADUATE LAB RESEARCH II
Short Title: GRADUATE LAB RESEARCH II
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 2-4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Graduate research in Biochemistry and Cell Biology. Designed for short term laboratory projects for first year graduate students. Repeatable for Credit.

BIOS 800 - BIOCHEMISTRY & CELL BIOLOGY GRADUATE RESEARCH
Short Title: BCB GRADUATE RESEARCH
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 1-15
Restrictions: Enrollment is limited to students with a major in Biochemistry and Cell Biology. Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Biochemistry & Cell Biology graduate research. Repeatable for Credit.

BIOS 801 - ECOLOGY & EVOLUTIONARY BIOLOGY GRADUATE RESEARCH
Short Title: EEB GRADUATE RESEARCH
Department: Biosciences
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 1-15
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Ecology & Evolutionary Biology graduate research. Repeatable for Credit.

Description and Code Legend
Note: Internally, the university uses the following descriptions, codes, and abbreviations for this academic program. The following is a quick reference:

Course Catalog/Schedule
- Course offerings/subject code for Biosciences: BIOS
- Course offerings/subject code for Neuroscience: NEUR

Department Description and Code
- BioSciences: BIOS

Undergraduate Degree Descriptions and Codes
- Bachelor of Arts degree: BA
- Bachelor of Science degree: BS

Undergraduate Major Descriptions and Codes
- Major in Biosciences (for both the BA and BS degrees): BISC
- Major in Neuroscience (for both the BA and BS degrees): NEUX

Undergraduate Major Concentration Descriptions and Codes
- Major Concentration in Biochemistry (for both the BA-BISC and BS-BISC degrees): BIBC
• Major Concentration in Computational Neuroscience (for the BS-NEUX degree): NECN
• Major Concentration in Ecology and Evolutionary Biology (for both the BA-BISC and BS-BISC degrees): BIEE
• Major Concentration in Integrative Biology (for both the BA-BISC and BS-BISC degrees): BIIB
• Major Concentration in Molecular and Cellular Neuroscience (for the BS-NEUX degree): NEMC

**Undergraduate Minor Descriptions and Codes**

• Minor in Biochemistry and Cell Biology: BCBM
• Minor in Ecology and Evolutionary Biology: EEBM
• Minor in Neuroscience: NEUR

**Graduate Degree Descriptions and Codes**

• Master of Science degree: MS
• Doctor of Philosophy degree: PhD

**Graduate Degree Program Descriptions and Codes**

• Degree Program in Biochemistry and Cell Biology: BIOC
• Degree Program in Ecology and Evolutionary Biology: EBIO

**CIP Code and Description**

1. **BIOC** Major/Program: CIP Code/Title: 26.0202 - Biochemistry
2. **BISC** Major/Program: CIP Code/Title: 26.0101 - Biology/Biological Sciences, General
3. **EBIO** Major/Program: CIP Code/Title: 26.1310 - Ecology and Evolutionary Biology
4. **NEUX** Major/Program: CIP Code/Title: 26.1501 - Neuroscience
5. **BIBC** Major Concentration: CIP Code/Title: 26.0202 - Biochemistry
6. **BICB** Major Concentration: CIP Code/Title: 26.0406 - Cell/Cellular and Molecular Biology
7. **BIEE** Major Concentration: CIP Code/Title: 26.1310 - Ecology and Evolutionary Biology
8. **BIIB** Major Concentration: CIP Code/Title: 26.0101 - Biology/Biological Sciences, General
9. **NECN** Major Concentration: CIP Code/Title: 26.1501 - Neuroscience
10. **NEMC** Major Concentration: CIP Code/Title: 26.1501 - Neuroscience
11. **BCBM** Minor: CIP Code/Title: 26.0202 - Biochemistry
12. **EEBM** Minor: CIP Code/Title: 26.1310 - Ecology and Evolutionary Biology
13. **NEUR** Minor: CIP Code/Title: 26.1501 - Neuroscience

1 Classification of Instructional Programs (CIP) 2020 Codes and Descriptions from the National Center for Education Statistics: [https://nces.ed.gov/ipeds/cipcode/](https://nces.ed.gov/ipeds/cipcode/)