BACHELOR OF ARTS (BA) DEGREE WITH A MAJOR IN ECOLOGY AND EVOLUTIONARY BIOLOGY

Program Learning Outcomes for the BA Degree with a Major in Ecology and Evolutionary Biology

Upon completing the BA degree with a major in Ecology and Evolutionary Biology, students will be able to:

1. Locate primary scientific literature and demonstrate the ability to apply critical thinking and problem solving skills to evaluate published and proposed research in the biological sciences.
2. Demonstrate an understanding of the modern scientific method, including a familiarity with current methods for designing experiments and/or mathematical models, and the ability to analyze and interpret data.
3. Demonstrate effective oral and written communication skills, including an ability to communicate effectively and work with diverse groups.
4. Demonstrate familiarity with the diversity of life.
5. Demonstrate a comprehensive knowledge of biology and an in-depth understanding of ecology and evolutionary biology.
6. Demonstrate understanding of the practice and culture of science, scientific ethics, and the relationship between science and society.

Requirements for the BA Degree with a Major in Ecology and Evolutionary Biology

For general university requirements, see Graduation Requirements (ga.rice.edu/undergraduate-students/academic-policies-procedures/graduation-requirements). Students pursuing the BA degree with a major in Ecology and Evolutionary Biology must complete:

- A minimum of 20 courses (49 credit hours) to satisfy major requirements. Additional credit hours may be required depending on course selection.
- A minimum of 120 credit hours to satisfy degree requirements.
- A minimum of 60 credit hours outside of major requirements.
- A minimum of 11 courses (33 credit hours) at the 300-level or above.

The Ecology and Evolutionary Biology major is intended for students pursuing a wide range of careers in the life sciences. Coursework emphasizes a broad understanding of basic biology, together with in-depth knowledge of ecology and evolutionary biology that culminates in a required 400-level capstone course incorporating primary scientific literature, presentations, and writing in an advanced topic. The BA program is well suited for students with an additional major outside of the sciences, and students are strongly encouraged to take advantage of study abroad opportunities.

The courses listed below satisfy the requirements for this major. In certain instances, courses not on this official list may be substituted upon approval of the major's academic advisor (or official certifier).

Students and their academic advisors should identify and clearly document the courses to be taken.

Summary

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Credit Hours Required for the Major in Ecology and Evolutionary Biology</td>
<td>Minimum of 49</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours Required for the BA Degree with a Major in Ecology and Evolutionary Biology</td>
<td>Minimum of 120</td>
</tr>
</tbody>
</table>

Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Biology Courses 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 101 SINGLE VARIABLE CALCULUS I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 102 SINGLE VARIABLE CALCULUS II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 1 from the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EBIO 338 DESIGN AND ANALYSIS OF BIOLOGICAL EXPERIMENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 121 GENERAL CHEMISTRY I & CHEM 123 GENERAL CHEMISTRY LABORATORY I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 125 GENERAL PHYSICS (WITH LAB)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Biology Lecture Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOC 201 INTRODUCTORY BIOLOGY</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EBIO 202 INTRODUCTORY BIOLOGY II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EBIO 325 ECOLOGY</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EBIO 334 / BIOC 334 EVOLUTION</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Biology Laboratory Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOC 211 INTERMEDIATE EXPERIMENTAL BIOSCIENCES</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>EBIO 213 INTRO EXPERIMENTAL ECOLOGY AND EVOLUTIONARY BIOLOGY</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Scientific Communication Course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 412 ADVANCED COMMUNICATION IN THE BIOLOGICAL SCIENCES</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Select 2 from the following:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>EBIO 321 ANIMAL BEHAVIOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 323 / ENST 323 CONSERVATION BIOLOGY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 326 INSECT BIOLOGY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 328 EVOLUTION OF GENES & GENOMES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 329 / BIOC 329 ANIMAL BIOLOGY AND PHYSIOLOGY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 331 / BIOC 331 BIOLOGY OF INFECTIOUS DISEASES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 333 / COMP 370 EVOLUTIONARY BIOINFORMATICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBIO 336 PLANT DIVERSITY</td>
<td></td>
</tr>
</tbody>
</table>
EBIO 340 / ENST 340 / ESCI 340 GLOBAL BIOGEOCHEMICAL CYCLES
EBIO 365 INTRODUCTORY PHYCOLOGY
EBIO 366 APPLIED PHYCOLOGY
EBIO 372 CORAL REEF ECOSYSTEMS
EBIO 391 TRANSFER CREDIT IN ECOLOGY AND EVOLUTIONARY BIOLOGY
EBIO 433 ADVANCED ECOLOGY

Lecture in Biochemistry and Cell Biology

Select 1 from the following: 3

BIOC 300 PARADIGMS IN BIOCHEMISTRY AND CELL BIOLOGY
BIOC 301 BIOCHEMISTRY I
BIOC 302 BIOCHEMISTRY II
BIOC 332 / BIOE 302 SYSTEMS PHYSIOLOGY
BIOC 335 CELLULAR AND MOLECULAR ANIMAL PHYSIOLOGY
BIOC 341 CELL BIOLOGY
BIOC 344 MOLECULAR BIOLOGY AND GENETICS
BIOC 352 PHYSICAL CHEMISTRY FOR THE BIOSCIENCES
BIOC 361 / BIOE 361 / GLHT 361 METABOLIC ENGINEERING FOR THE BIOSCIENCES
BIOC 365 / HUMA 368 CONCEIVING AND MISCONCEIVING THE MONSTROUS IN FICTION AND IN ART, IN MEDICINE AND IN BIOSCIENCE
BIOC 371 SEMINAR IN CONTEMPORARY BIOLOGICAL AND BIOMEDICAL RESEARCH
BIOC 372 IMMUNOLOGY
BIOC 380 / NEUR 380 / PSYC 380 FUNDAMENTAL NEUROSCIENCE SYSTEMS
BIOC 385 / NEUR 385 FUNDAMENTALS OF CELLULAR AND MOLECULAR NEUROSCIENCE
BIOC 390 TRANSFER CREDIT IN BIOCHEMISTRY AND CELL BIOLOGY
BIOC 424 MICROBIOLOGY AND BIOTECHNOLOGY
BIOC 425 PLANT MOLECULAR GENETICS AND DEVELOPMENT
BIOC 443 ADVANCED CONCEPTS AND CRITICAL ANALYSIS IN MODERN DEVELOPMENTAL BIOLOGY
BIOC 445 ADVANCED MOLECULAR BIOLOGY AND GENETICS
BIOC 447 EXPERIMENTAL BIOLOGY AND THE FUTURE OF MEDICINE
BIOC 450 VIRUSES AND INFECTIOUS DISEASES
BIOC 460 CANCER BIOLOGY
BIOC 470 COMPUTATION WITH BIOLOGICAL DATA
BIOC 481 MOLECULAR BIOPHYSICS I
BIOC 482 STRUCTURAL BIOLOGY

Select 1 from the following: 2

EBIO 316 LAB MODULE IN ECOLOGY
EBIO 317 LAB MODULE IN BEHAVIOR
EBIO 319 TROPICAL FIELD BIOLOGY
EBIO 320 ECOLOGY AND CONSERVATION OF BRAZILIAN WETLANDS LABORATORY
EBIO 324 CONSERVATION BIOLOGY LAB
EBIO 327 BIOLOGICAL DIVERSITY
EBIO 330 INSECT BIOLOGY LAB
EBIO 332 EVOLUTION OF GENES & GENOMES LAB
EBIO 335 EVOLUTIONARY BIOINFORMATICS LAB
EBIO 337 FIELD BIRD BIOLOGY LAB
EBIO 367 INTRODUCTION PHYCOLOGY LAB
EBIO 368 APPLIED PHYCOLOGY LAB
EBIO 379 / ENST 379 LAB MODULE IN AQUATIC ECOLOGY WITH SCUBA
EBIO 393 LABORATORY TRANSFER CREDIT IN BIOSCIENCES

BIOC Laboratory Course Requirement
Select 1 from the following or complete an additional laboratory course from the EBIO Laboratory requirement: 1-2

BIOC 311 ADVANCED EXPERIMENTAL BIOSCIENCES
BIOC 313 INTRODUCTORY SYNTHETIC BIOLOGY
BIOC 318 MICROBIOLOGY LABORATORY
BIOC 320 / BIOE 342 LABORATORY IN TISSUE CULTURE
BIOC 413 EXPERIMENTAL MOLECULAR BIOLOGY
BIOC 415 EXPERIMENTAL PHYSIOLOGY

Natural Sciences or Engineering
Select 1 course offered by the School of Natural Sciences or the School of Engineering at the 300-level or above. 3

Total Credit Hours Required for the Major in Ecology and Evolutionary Biology Minimum of 49

Additional Credit Hours to Complete BA Degree Requirements 11

University Graduation Requirements (ga.rice.edu/undergraduate-students/academic-policies-procedures/graduation-requirements) 60

Total Credit Hours Minimum of 120

Footnotes and Additional Information
* Includes coursework completed as distribution credit, FWIS, LPAP, upper-level, residency (hours taken at Rice), 60 hours outside of the major (if applicable), and any additional academic program requirements. The “hours outside of the major” requirement may include all of the above university requirements.

1 Permissible substitutions: MATH 111 and MATH 112 may be substituted for MATH 101; CHEM 151 and CHEM 153 may be substituted for CHEM 121 and CHEM 123; PHYS 101 and PHYS 103 or PHYS 111 may be substituted for PHYS 125.

2 One of the advanced laboratory course requirements may be satisfied by taking EBIO 306, if taken for at least 2 credit hours.
Bachelor of Arts (BA) Degree with a Major in Ecology and Evolutionary Biology

3 The elective course in Natural Science or Engineering must be taken for at least 3 credit hours. Courses offered by the School of Natural Sciences and the School of Engineering include the following subject codes: ASTR, BIEE, CAAM, CEVE, CHEM, COMP ELEC, ENGI, ENST, ESCI, GLHT, HEAL, KINE, MATH, MECH, MSNE, NSCI, PHYS, and STAT.

Policies for the BA Degree with a Major in Ecology and Evolutionary Biology

Advising
Rice University policies are governed primarily by the General Announcements; students are encouraged to look there first for academic policies. Advising information specific to the Department of BioSciences can be found at the department website by clicking on the tab for Undergraduate Studies: http://biosciences.rice.edu/.

Transfer Credit
For Rice University’s policy regarding transfer credit, see Transfer Credit (ga.rice.edu/undergraduate-students/academic-policies-procedures/transfer-credit). Some departments and programs have additional restrictions on transfer credit. The Office of Academic Advising maintains the university’s official list of transfer credit advisors on their website: http://oaa.rice.edu. Students are encouraged to meet with their academic program’s transfer credit advisor when considering transfer credit possibilities.

Departmental Transfer Credit Guidelines
Students pursuing the major in Ecology and Evolutionary Biology should be aware of the following departmental transfer credit guidelines:

• Requests for transfer credit will be considered by the program director (and/or the program’s official transfer credit advisor) on an individual case-by-case basis.

For additional information, please see the BioSciences website: http://biosciences.rice.edu/.

Opportunities for the BA Degree with a Major in Ecology and Evolutionary Biology

Academic Honors
The university recognizes academic excellence achieved over an undergraduate’s academic history at Rice. For information on university honors, please see Latin Honors (ga.rice.edu/undergraduate-students/honors-distinctions/university) (summa cum laude, magna cum laude, and cum laude) and Distinction in Research and Creative Work (ga.rice.edu/undergraduate-students/honors-distinctions/university). Some departments have department-specific Honors awards or designations.

Departmental Honors
Instructions on applying for the Distinction in Research and Creative Work award from the Department of BioSciences can be found at the department website, by clicking on the link for Undergraduate Studies, at: http://biosciences.rice.edu/.

Research in the BioSciences
Research is highly encouraged for all biosciences majors, and there are many opportunities for independent research at Rice. Information about research for credit and research internships specific to the Department of