The Department of Chemistry offers undergraduate chemistry majors leading to both the bachelor of science (BS) degree and the bachelor of arts (BA) degree. The BS program rigorously prepares students for advanced work in chemistry or a related discipline, and the degree requirements are consistent with the guidelines for certification by the American Chemical Society. This curriculum provides a broad and comprehensive introduction to core areas of chemistry while promoting depth of understanding in one or more specific fields. BS students complete a series of foundation courses in general chemistry, analytical chemistry, biological chemistry, inorganic chemistry, organic chemistry, and physical chemistry. Students then complete one or more specializations, or "tracks," consisting of in-depth courses both in and out of the specialization. The BA degree is a more flexible program that provides a comprehensive overview of all areas of chemistry, including laboratory experiences, but can be coupled more easily with other majors or professional career paths. Both degree programs offer students a solid background in the fundamental principles of chemistry, the properties and reactions of chemical compounds, and their uses.

Graduate studies emphasize individual research together with a fundamental understanding of chemistry beyond the students' specific interests. Faculty research interests include the synthesis and biosynthesis of organic natural products; supramolecular chemistry, molecular recognition and biological catalysis; bioinorganic and organometallic chemistry; main group element and transition metal chemistry; the design of nanophase solids; molecular photochemistry and photophysics; infrared kinetic spectroscopy, laser, and NMR spectroscopy; studies of electron transfer in crossed beams; theoretical and computational chemistry, the study of fullerene molecules, carbon nanotubes, and their derivatives; polymer synthesis and characterization; molecular electronics; molecular machines; and chemical-based nanotechnology.

Bachelor's Programs
- Bachelor of Arts (BA) Degree with a Major in Chemistry (ga.rice.edu/programs-study/departments-programs/natural-sciences/chemistry/chemistry-ba)
- Bachelor of Science (BS) Degree with a Major in Chemistry (ga.rice.edu/programs-study/departments-programs/natural-sciences/chemistry/chemistry-bs)

Coordinated Program
Bachelor of Science (BS) Degree with a Major in Chemical Physics (ga.rice.edu/programs-study/departments-programs/natural-sciences/chemical-physics/chemical-physics-bs)

* This degree is jointly managed by the Department of Chemistry and the Department of Physics and Astronomy. For more information, see Chemical Physics. (ga.rice.edu/programs-study/departments-programs/natural-sciences/chemical-physics/chemical-physics-bs)

Master's Program
- Master of Arts (MA) Degree in the field of Chemistry*

Doctoral Program
- Doctor of Philosophy (PhD) Degree in the field of Chemistry (ga.rice.edu/programs-study/departments-programs/natural-sciences/chemistry/chemistry-phd)

* Although students are not normally admitted to a Master of Arts (MA) degree program, graduate students may earn the MA as they work towards the PhD.

Chair
Anatoly Kolomeisky

Professors
Pulickel Ajayan
Pedro Alvarez
Gang Bao
Enrique Barrera
Andrew Barron
Cecilia Clementi
Paul Engel
Jason Hafner
Naomi Halas
Jeffrey Hartgerink
John Hutchinson
Anatoly Kolomeisky
Christy Landes
Stephan Link
Jun Lou
Frederick MacKintosh
Caroline Masiello
Seiichi Matsuda
Antonios Mikos
Emilia Morosan
K. C. Nicolaou
Jose Onuchic
George Phillips
Peter Rossky
Chemistry

Associate Professors
Gustavo Scuseria
Edwin (Ned) Thomas
James Tour
R. Bruce Weisman
Kenton Whitmire
Lon Wilson
Peter Wolynes
Michael Wong
Boris Yakobson

Assistant Professors
Zachary Ball
Michael Diehl
Laszlo Kurti
Angel Marti
Eugene Zubarev

Professors Emeriti
W. Edward Billups
Philip Brooks
Vicki Colvin
Robert Curl
Graham Glass
George McLendon
Ronald Parry

Lecturers
Lawrence B. Alemany
Michelle Gilbertson
Kristi Kincaid
Caroline V. McNeil
Lesa Tran Lu

Instructors
Julianne Yost

Research Professor
Bruce Johnson

Assistant Research Professor
Carolyn Nichol

Adjunct Faculty
Marco Ciufolini
Tohru Fukuyama
Scott Gilbertson
Ganesh Kailasam
Thomas Kent
Luz Maria Martinez Calderon
Michael Metzker
B. Montgomery Pettit
Henk Mooiweer
Frank Noe
Marty Pagel

Keith Pannell
Emilie Ringe
Corina Rogge
Yongcheng Song
Ben van den Brule
Marcelo Videa Vargas
Damian Young

For Rice University degree-granting programs:
To view the list of official course offerings, please see Rice’s Course Catalog (https://courses.rice.edu/admweb/ISWKSCAT.cat?p_action=cata)
To view the most recent semester’s course schedule, please see Rice’s Course Schedule (https://courses.rice.edu/admweb/ISWKSCAT.cat)

Chemistry (CHEM)
CHEM 101 - INTRODUCTION TO SCIENTIFIC RESEARCH
Short Title: INTRO SCIENTIFIC RESEARCH
Department: Chemistry
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Research
Credit Hours: 5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This course is for high school students of the classes 2016 and 2017. As visiting students, the students will conduct scientific research in the laboratories of Rice faculty in the areas of Nanotechnology, Chemistry, Materials, and Engineering. Two applications need to be submitted for enrollment into this course. First, the Research Experience in Chemistry application (see course URL for link to application below) should be emailed, along with all required documents as indicated in the application, to CHEM101@rice.edu. Upon confirmation of acceptance from the Chemistry department, students must then complete the visiting student application process for high school students. Instructions to do this can be found in the Application Checklist at summer.rice.edu. Instructor Permission Required. Repeatable for Credit.

CHEM 110 - FRESHMAN CHEMISTRY SEMINAR
Short Title: FRESHMAN CHEMISTRY SEMINAR
Department: Chemistry
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This half-semester course introduces freshmen to chemical research at Rice and in Houston. The course is offered both semesters, and although some of the same material is covered in both semesters, the fall course emphasizes material for students interested in the PhD track towards academic and industrial chemistry careers, while the spring semester places greater emphasis on research in the Texas Medical Center (TMC) for students who plan to pursue the health professions. Additional tours and activities TBA. All first-year non-transfer students are eligible to enroll in CHEM 110 regardless of AP credit.
CHEM 121 - GENERAL CHEMISTRY I
Short Title: GENERAL CHEMISTRY I
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Introduction of chemical phenomena emphasizing problems and methods in Chemistry. Either CHEM 121 or CHEM 151 may be taken as a prerequisite for higher study in chemistry, but only one of these may be taken for credit. Students must also register for CHEM 123 General Chemistry Laboratory I. The course and the co-requisite lab are graded jointly.

CHEM 122 - GENERAL CHEMISTRY II
Short Title: GENERAL CHEMISTRY II
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): CHEM 121
Description: A continuation of CHEM 121. Either CHEM 122 or CHEM 152 may be taken as prerequisites for higher study in chemistry, but only one may be taken for credit. Students must also register for CHEM 124 General Chemistry Laboratory II. The course and the co-requisite lab are graded jointly.

CHEM 123 - GENERAL CHEMISTRY LABORATORY I
Short Title: GENERAL CHEMISTRY LAB I
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Distribution Group: Distribution Group III
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Required laboratory component of CHEM 121. Students must also register for CHEM 121. Credit may only be received for either CHEM 123 or CHEM 153 but not both. The course and the co-requisite lab are graded jointly.

CHEM 124 - GENERAL CHEMISTRY LABORATORY II
Short Title: GENERAL CHEMISTRY LAB II
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Distribution Group: Distribution Group III
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): CHEM 123 or CHEM 153
Description: Required laboratory component of CHEM 122. Students must also register for CHEM 122. Credit may not be received for both CHEM 124 and CHEM 154. The course and the co-requisite lab are graded jointly.

CHEM 151 - HONORS CHEMISTRY I
Short Title: HONORS CHEMISTRY I
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: CHEM 153
Description: An accelerated introduction to chemical phenomena emphasizing principles and theories in chemistry. Recommended strongly for students who plan to major in chemistry or have a strong high school background. Students with AP credit in Chemistry who intend to pursue advanced study in Chemistry are strongly encouraged to take CHEM 151 and CHEM 152. Students must also register for CHEM 153, which is laboratory that meets once per week. Either CHEM 121 or CHEM 151 may be taken as a prerequisite for higher study in chemistry, but only one of these may be taken for credit. The course and the co-requisite lab are graded jointly. Recommended prerequisite(s): high school chemistry and physics.

CHEM 152 - HONORS CHEMISTRY II
Short Title: HONORS CHEMISTRY II
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): CHEM 151
Corequisite: CHEM 154
Description: A continuation of CHEM 151. Students with AP credit in Chemistry who intend to pursue advanced study in Chemistry are strongly encouraged to take CHEM 151 and CHEM 152. Students must also register for CHEM 154 which is a laboratory that meets once per week. Either CHEM 122 or CHEM 152 may be taken as a prerequisite for higher study in chemistry, but only one of these may be taken for credit. The course and the co-requisite are graded jointly.
CHEM 153 - HONORS CHEMISTRY LABORATORY I
Short Title: HONORS CHEMISTRY LABORATORY I
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Distribution Group: Distribution Group III
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: CHEM 151
Description: Required laboratory component of CHEM 151. Students must also register for CHEM 151. The course and the co-requisite lab are graded jointly.

CHEM 154 - HONORS CHEMISTRY LABORATORY II
Short Title: HONORS CHEMISTRY LABORATORY II
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Distribution Group: Distribution Group III
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: CHEM 152
Description: Required laboratory component of CHEM 152. Students must also register for CHEM 152. The course and the co-requisite lab are graded jointly.

CHEM 176 - THE CHEMISTRY OF ART
Short Title: THE CHEMISTRY OF ART
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Seminar
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: The chemistry of the materials and methods used to create, conserve and authenticate art objects will be presented. Topics will include sculpture, painting, photography, textiles, jewelry, furniture, etc. Taught in conjunction with the Conservation Department and Staff of the MFAH. Some classes will be held at the MFAH or HMNS.

CHEM 178 - THE CHEMISTRY OF COOKING
Short Title: THE CHEMISTRY OF COOKING
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: This course examines the chemistry involved in the composition, transformation, and consumption of food. Topics include chemical properties and reactions of food, cooking tools, and techniques, sensory perception, and nutrition. Lectures and hands-on kitchen experiments are taught in conjunction with Rice Dining Service. Knowledge of high school chemistry is expected.

CHEM 201 - ADVANCED TOPICS IN GENERAL CHEMISTRY
Short Title: ADV TOPICS IN GEN CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: CHEM 201 is a one-semester lecture course intended for 1st-year undergraduates who have completed a high school AP Chem course (or equivalent) and wish to reinforce or deepen their understanding of challenging core topics. Focus areas include: quantum descriptions of atoms and molecules, chemical thermodynamics, and reaction kinetics and dynamics. Completion of AP Calculus or concurrent enrollment in Math 101 or 111 is expected.

CHEM 210 - WILD TOPICS IN CHEMISTRY AND NANOTECHNOLOGY
Short Title: WILD TOPICS CHEM AND NANOTECH
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: A variety of topics related to chemistry and nanotechnology will be discussed. Some topics are classical while others are current. Topics may include nanocars, molecular electronics, how to form a startup company. Grades will be based upon attendance and quizzes. Cross-list: CEVE 210, MSNE 210. Repeatable for Credit.

CHEM 211 - ORGANIC CHEMISTRY I
Short Title: ORGANIC CHEMISTRY I
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): CHEM 122 or CHEM 152
Corequisite: CHEM 213
Description: Organic chemistry of aliphatic and aromatic compounds with emphasis on structure, functional groups, bonding, stereochemistry, and reaction mechanisms. CHEM 211 may be taken as a prerequisite for higher study in chemistry. CHEM 211 and CHEM 213 are co-requisites and must be taken together in the same semester.
CHEM 215 - ORGANIC CHEMISTRY LAB
Short Title: ORGANIC CHEMISTRY LAB
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): CHEM 211
Description: Synthesis, purification, and characterization of organic compounds. Experiments related to topics covered in CHEM 211, 212. Includes identification of unknown organic compounds. One lab per week.
CHEM 330 - ANALYTICAL CHEMISTRY
Short Title: ANALYTICAL CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 211
Description: A treatment of modern analytical chemistry with an emphasis on instrumentation. Applications of analytical chemistry as applied to areas of medicine, forensics, and material. Taught in the Fall.

CHEM 320 - ORGANIC CHEMISTRY II
Short Title: ORGANIC CHEMISTRY II
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 211 and (CHEM 232 (may be taken concurrently) or CHEM 365 (may be taken concurrently))
Description: A continuation of CHEM 211 that is in greater depth than CHEM 212. Primarily for chemistry majors and science or engineering students with a strong interest in chemistry research. Either CHEM 212 or CHEM 320 completes the two-semester organic chemistry sequence and may be taken as a prerequisite for higher study in chemistry, but only one may be taken for credit. The pre-req CHEM 232 or CHEM 365 may be taken concurrently with CHEM 320. For registration instructions and additional course information, please see the course web page in Owlspace. Instructor Permission Required. Mutually Exclusive: Credit cannot be earned for CHEM 320 and CHEM 311.

CHEM 366 - INORGANIC CHEMISTRY LAB
Short Title: INORGANIC CHEMISTRY LAB
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 211
Description: Experiments illustrating techniques in synthetic organic chemistry and instrumental methods of analysis. Normally taken in conjunction with CHEM 212 or CHEM 320. NOTE: only one of CHEM 232 and CHEM 365 may be taken for credit.

CHEM 360 - INORGANIC CHEMISTRY
Short Title: INORGANIC CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Corequisite: CHEM 362
Description: Survey of the periodic table; atomic and molecular structure; bonding in covalent, ionic, and electron deficient systems; thermochemical principles and experimental techniques for analysis, structure determination, and synthesis.

CHEM 362 - INORGANIC CHEMISTRY DISCUSSION
Short Title: INORGANIC CHEMISTRY DISCUSSION
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 0
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Corequisite: CHEM 360
Description: Repeatable for Credit.

CHEM 365 - ORGANIC CHEMISTRY LAB
Short Title: INORGANIC CHEMISTRY LAB
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 211
Description: Experiments illustrating techniques in synthetic organic chemistry and instrumental methods of analysis. Normally taken in conjunction with CHEM 212 or CHEM 320. NOTE: only one of CHEM 232 and CHEM 365 may be taken for credit.
CHEM 367 - MATERIALS CHEMISTRY LAB
Short Title: MATERIALS CHEMISTRY LAB
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Provides a hands-on experience for undergraduate student interested in the synthesis and structural characterization of nanostructured materials. Synthetic methods will include wet chemistry techniques and lithographic preparation of nanostructures. The course will provide understanding of and exposure to modern analysis and characterization techniques, including spectroscopy, X-ray methods, and microscopy.

CHEM 368 - CHEMICAL MEASUREMENT LAB
Short Title: CHEMICAL MEASUREMENT LAB
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Introduction to Experimental Physical Chemistry. NOTE: only one of CHEM 381 and CHEM 368 may be taken for credit. Mutually Exclusive: Credit cannot be earned for CHEM 368 and CHEM 381.

CHEM 366 - ADVANCED INORGANIC SYNTHESIS
Short Title: ADVANCED INORGANIC SYNTHESIS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Advanced techniques in inorganic and organometallic synthesis will be covered including air sensitive manipulations using Schlenk line, vacuum lines and dry box. Graduate students may register with an approved Special Registration form.

CHEM 391 - RESEARCH FOR UNDERGRADUATES
Short Title: RESEARCH FOR UNDERGRADUATES
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Independent chemical research at Rice or in other Texas Medical Center groups. Students spend at least 3 hours per week in the laboratory for each semester hour of credit, in addition to other requirements. If taken for 3 or more hours, counts toward the CHEM 391 requirement for the BS degree in chemistry. Instructor permission required. Students are expected to complete CHEM 391 before the end of their junior year; permission is not normally granted for students in their final year of undergraduate study. Prior to enrollment, students must secure a position in a laboratory. Application materials found on the department website must be submitted by August 1st for Fall term and December 1st for the Spring term. Instructor Permission Required.

CHEM 398 - ADVANCED MODULE: DEVELOPMENT OF EXPERIMENTS FOR UNDERGRADUATE CHEMISTRY LABS
Short Title: ADV MOD DEV EXP UG CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: An advanced laboratory module open to exceptional majors to develop laboratory experiments under the supervision of a chemistry faculty member. Each student will design an experiment to be included in an undergraduate teaching lab. Required is a written document, which should include an experimental protocol, background information and possible pre- and post-lab questions. Instructor Permission Required.

CHEM 401 - ADVANCED ORGANIC CHEMISTRY
Short Title: ADVANCED ORGANIC CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 212 or CHEM 320
Description: The principles of structure and bonding are used to explain and predict reactivity in organic chemistry. Extensive practice with reaction mechanism and curved-arrow formalism. Topics include conformational analysis, acidity/basicity, functional group preparation, stereoselective synthesis, and organo-element chemistry. Graduate/Undergraduate Equivalency: CHEM 501. Mutually Exclusive: Credit cannot be earned for CHEM 401 and CHEM 501.
CHEM 415 - CHEMICAL KINETICS AND DYNAMICS
Short Title: CHEMICAL KINETICS & DYNAMICS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): MATH 212 and (PHYS 102 or PHYS 112)
Description: Description and analysis of the rates of unimolecular, bimolecular and composite chemical reactions in gas and solution phases. Both macroscopic kinetics and microscopic reaction dynamics are covered. Graduate/Undergraduate Equivalency: CHEM 515. Mutually Exclusive: Credit cannot be earned for CHEM 415 and CHEM 515.

CHEM 420 - CLASSICAL AND STATISTICAL THERMODYNAMICS
Short Title: CLASSICAL & STAT THERMODYNAMIC
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): MATH 212 and (PHYS 102 or PHYS 112) and CHEM 310 or (CHEM 311 and CHEM 312)
Description: A review of the principles of classical thermodynamics and an introduction to the theories and methods of statistical thermodynamics with applications to problems in chemistry. Graduate/Undergraduate Equivalency: CHEM 520. Mutually Exclusive: Credit cannot be earned for CHEM 420 and CHEM 520.

CHEM 425 - ORGANIC GEOCHEMISTRY
Short Title: ORGANIC GEOCHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: This course covers the organic geochemistry of the natural environment. Topics include: production, transport, decomposition, and storage of organic matter in the marine and terrestrial environments, use of isotopes to track biogeochemical processes, and natural and perturbed carbon cycle issues, including past and recent climate shifts. Cross-list: ENST 425, ESCI 425.

CHEM 430 - QUANTUM CHEMISTRY
Short Title: QUANTUM CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (CHEM 310 or CHEM 312) and MATH 212 and (PHYS 102 or PHYS 112)
Description: The purpose of this course is to provide the student with a working knowledge of the basic concepts and mathematical formalism of quantum mechanics. Topics include the mathematics of quantum mechanics, one-dimensional problems, central field problems, the harmonic oscillator, angular momentum, perturbation theory, spin, and introduction to methods of modern electronic structure theory, with applications in atomic and molecular structures, spectroscopy, and chemical bonding. Graduate/Undergraduate Equivalency: CHEM 530. Mutually Exclusive: Credit cannot be earned for CHEM 430 and CHEM 530.

CHEM 475 - PHYSICAL METHODS IN INORGANIC CHEMISTRY
Short Title: PHYS METH INORGANIC CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 360
Description: A survey course of research techniques used in modern inorganic chemistry. Topics covered will include X-ray diffraction, mass spectrometry, magnetism, and various spectroscopies (IR, Raman, UV-Vis, NMR, EPR, XPS, and Mossbauer). Graduate/Undergraduate Equivalency: CHEM 575. Mutually Exclusive: Credit cannot be earned for CHEM 475 and CHEM 575.

CHEM 477 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Lecture, Seminar, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.
CHEM 491 - RESEARCH FOR UNDERGRADUATES
Short Title: RESEARCH FOR UNDERGRADUATES
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 391
Description: Independent chemical research at Rice or in other Teams Medical Center groups. Ordinarily taken by students who have taken CHEM 391. Students spend at least 3 hours per week in the laboratory for each semester hour of credit, in addition to other requirements. Instructor permission required. Prior to enrollment, students must secure a position in a laboratory. Application materials, found on the department website, must be submitted by August 1st for Fall term, December 1st for Spring term, or April 1st for Summer term. Instructor Permission Required. Repeatable for Credit.

CHEM 492 - UNDERGRADUATE HONORS RESEARCH
Short Title: UNDERGRADUATE HONORS RESEARCH
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 391
Description: The 1st half of the Honors Research Program. CHEM 492 and CHEM 493 function as a pair and must be taken in the same academic year. Requirements include at least 15 hours of laboratory research per week and written/oral progress reports. The sequence will culminate in the completion of a thesis (research report) in the spring ter. Instructor permission required; for approved students only. Applications must be submitted to the course instructor February 1 - August 1. Students are encouraged to apply early. Students who complete the Chemistry Honors Research Program are given primary consideration for "Distinction in Research and Creative Work" a university award for select undergraduates, chosen by the department and granted at commencement, which appears on the transcript and diploma. Ordinarily offered Fall term. Instructor Permission Required.

CHEM 493 - UNDERGRADUATE HONORS RESEARCH
Short Title: UNDERGRADUATE HONORS RESEARCH
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 5
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 492
Description: The 2nd half of the Honors Research Program. CHEM 492 and CHEM 493 function as a pair and must be taken in the same academic year. Requirements include at least 15 hours of laboratory research per week and a thesis (research report). Students who complete the Chemistry Honors Research Program are given primary consideration for "Distinction in Research and Creative Work," a university award for select undergraduates, chosen by the department and granted at commencement, which appears on the transcript and diploma. Ordinarily offered in Spring. Instructor Permission Required.

CHEM 495 - TRANSITION METAL CHEMISTRY
Short Title: TRANSITION METAL CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): CHEM 211 and CHEM 360
Description: Structure, bonding and reactivity of coordination and organometallic compounds; ligand field theory; electronic spectroscopy; magnetism; reaction mechanisms; catalysis. Graduate/Undergraduate Equivalency: CHEM 595. Mutually Exclusive: Credit cannot be earned for CHEM 495 and CHEM 595.

CHEM 501 - ADVANCED ORGANIC CHEMISTRY
Short Title: ADVANCED ORGANIC CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: The principles of structure and bonding are used to explain and predict reactivity in organic chemistry. Extensive practice with reaction mechanism and curved-arrow formalism. Topics include conformational analysis, acidity/basicity, functional group preparation, stereoselective synthesis, and organo-element chemistry. Graduate/Undergraduate Equivalency: CHEM 401. Mutually Exclusive: Credit cannot be earned for CHEM 501 and CHEM 401.

CHEM 505 - PROPOSAL WRITING AND REVIEW IN CHEMISTRY
Short Title: PROPOSAL WRITING IN CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 2
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course teaches how to prepare scientific proposals including developing an idea, writing, and peer review including creating a mock panel review.
CHEM 511 - SPECTRAL METHODS IN ORGANIC CHEMISTRY
Short Title: SPECTRAL METHODS ORGANIC CHEM
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHEM 212 or CHEM 320
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. Elucidation of organic structures by physical techniques. Interpretation of infrared, ultraviolet, nuclear magnetic resonance, and mass spectral.

CHEM 515 - CHEMICAL KINETICS AND DYNAMICS
Short Title: CHEMICAL KINETICS & DYNAMICS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHEM 212 or CHEM 320
Description: Description and analysis of the rates of unimolecular, bimolecular, and composite chemical reactions in gas and solution phases. Both macroscopic kinetics and microscopic reaction dynamics are covered. Graduate/Undergraduate Equivalency: CHEM 415. Mutually Exclusive: Credit cannot be earned for CHEM 515 and CHEM 415.

CHEM 520 - CLASSICAL AND STATISTICAL THERMODYNAMICS
Short Title: CLASSICAL & STAT THERMODYNAMIC
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHEM 310 or (CHEM 311 or CHEM 312) and MATH 212 and (PHYS 102 or PHYS 112)
Description: A review of the principles of classical thermodynamics and an introduction to the theories and methods of statistical thermodynamics with applications to problems in chemistry. Graduate/Undergraduate Equivalency: CHEM 420. Mutually Exclusive: Credit cannot be earned for CHEM 520 and CHEM 420.

CHEM 523 - ADVANCED ANALYSIS METHODS FOR MOLECULAR DYNAMICS FROM STATISTICAL MECHANICS TO MACHINE LEARNING
Short Title: MOLECULAR DYNAMICS METHODS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. Modern methods to extract physical and chemical information from molecular dynamics simulation will be presented, including the determination of reaction coordinates, free energies calculations, and estimation of experimentally measurable observables. The theoretical background and different applications will be discussed. The students will apply the methods on practical examples.

CHEM 525 - FUNDAMENTAL PHOTOLUMINESCENCE SPECTROSCOPY
Short Title: FUND PHOTOLUM SPECT
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. This course aims to cover basic topics in photoluminescence spectroscopy such as instrumentation, different photoluminescent species, solvent relaxation, photoluminescence quenching, energy transfer and anisotropy. Novel applications of photoluminescence spectroscopy such as sensing, multiphoton excitation and the fluorescence of proteins will also be discussed. Undergraduates may register for this course by a Special Registration form.

CHEM 530 - QUANTUM CHEMISTRY
Short Title: QUANTUM CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: The purpose of this course is to provide the student with a working knowledge of the basic concepts and mathematical formalism of quantum mechanics. Topics include the mathematics of quantum mechanics, one-dimensional problems, central field problems, the harmonic oscillator, angular momentum, perturbation theory, spin, and introduction to methods of modern electronic structure theory, with applications in atomic and molecular structures, spectroscopy, and chemical bonding. Graduate/Undergraduate Equivalency: CHEM 430. Mutually Exclusive: Credit cannot be earned for CHEM 530 and CHEM 430.

CHEM 531 - ADVANCED QUANTUM CHEMISTRY
Short Title: ADV QUANTUM CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. A hands-on approach to the methods of computational quantum chemistry and their application.
CHEM 533 - NANO SCIENCE AND NANO TECHNOLOGY I
Short Title: NANO SCIENCE & NANO TECHNOLOGY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. An introduction to the basic principles of nanoscience and nanotechnology. Size dependent physical properties of nanoscopic solids will be described using solid state physics and molecular orbital theory as a foundation. Wet chemical techniques that produce nanoscale materials (e.g. carbon nanotubes, semiconductor and metallic nanocrystals, dendrimers...) will be introduced in the second half of the semester. Expected to be taught Spring 2019. Cross-list: CEVE 533, MSNE 534.

CHEM 541 - MOLECULES THAT CHANGED THE WORLD
Short Title: MOLECULES CHANGED THE WORLD
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHEM 212 or CHEM 320
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. This course will expand on our learned knowledge of some of the Nature’s most intriguing molecules and the ability of Man to discover, synthesize, modify and use them to our advantage in what areas were not formerly envisioned. Undergraduates may register for the course by filling out a special registration form. These forms can be brought to DBH 243 for processing.

CHEM 542 - MEDICINAL CHEMISTRY I
Short Title: MEDICINAL CHEMISTRY I
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHEM 212 or CHEM 320 and BIOC 301
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. An introductory course intended to provide the student with an overview of the elements of drug discovery, design and development. Targets for drug discovery will be discussed, as well as considerations of drug optimization with respect to the biological target and drug metabolism. A summary of the FDA and patent processes will also be included. Undergraduates may register for the course by filling out a special registration form. These forms can be brought to DBH 243 for processing.

CHEM 545 - PHYSICAL ORGANIC CHEMISTRY
Short Title: PHYSICAL ORGANIC CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Study of organic reaction mechanisms. Includes Huckel M.O. theory, kinetics, isotope effects, linear free energy relationships, thermochemical group additivity, substituent and solvent effects, acidity, and free radical chemistry. Recommended Prerequisite(s): CHEM 311. Repeatable for Credit.

CHEM 547 - SUPRAMOLECULAR CHEMISTRY
Short Title: SUPRAMOLECULAR CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHEM 212 or CHEM 320
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. An examination of noncovalent interactions and their impact in biology, chemistry, and engineering. Topics will include self-assembly, molecular recognition, protein folding and structure, nucleic acid structure, polymer organization, crystallization and applications of the above for the design and synthesis of nanostructured materials.

CHEM 548 - PEPTIDE CHEMISTRY DESIGN, SYNTHESIS AND STRUCTURE
Short Title: PEPTIDE CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Undergraduates may register for this course by Special Registration form. The course examines solid phase peptide synthesis and strategies to prepare both simple and complex peptide primary architectures. Followed by looking at analytical methods to assess peptide purity and structure. The course will then consider the design and characterization of peptide sequences that will result in specific 3D structures.
CHEM 554 - DRUG DISCOVERY AT THE INTERFACE OF CHEMISTRY AND BIOLOGY
Short Title: DRUG DISCOVERY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Drug discovery requires a close integration of chemistry and biology. This course explores the design and development of new medicine from a chemical biological perspective. Topics include fundamental methods for biomolecule synthesis and engineering and application to hybrid chemical/biologic drugs, as well as modern approaches for target discovery and validation. Repeatable for Credit.

CHEM 557 - NANOCARBONS
Short Title: NANOCARBONS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. This course will survey the chemistry, physics, and selected applications of carbon nanostructures. Fullerenes, carbon nanotubes, and graphene will be the main focus. Students are expected to have a solid background in physical chemistry. Undergraduate students may register for this course by Special Registration form.

CHEM 558 - NANOCRYSTALS
Short Title: NANOCRYSTALS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. This course will cover principles of electronic spectroscopy of molecules and nanoparticles with emphasis on single molecule/particle spectroscopy methods and analysis techniques.
CHEM 570 - NANO TECHNOLOGY FOR TEACHERS, TEACHING CHEMICAL CONCEPTS VIA INQUIRY I
Short Title: TEACHING CHEMICAL CONCEPTS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Using the Concept Development Approach, this course will teach teachers how to engage students in inquiry science and provide teachers with in depth conceptual knowledge about chemical fundamentals. The course will include hands-on activities and discussions about chemical concepts that include atomic molecular theory, atomic structure, quantum energy levels, thermodynamics, equilibrium, and bonding. Nanotechnology research with environmental applications will be highlighted throughout the course. Instructor Permission Required.

CHEM 571 - TEACHING CHEMICAL CONCEPTS VIA INQUIRY II, NANO TECHNOLOGY FOR TEACHERS
Short Title: CHEMICAL CONCEPTS - INQUIRY II
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Using the Concept Development Approach, this course will teach teachers how to engage students in inquiry science and provide teachers with in depth conceptual knowledge about chemical fundamentals. The course will include hands-on activities and discussions about chemical concepts that include gas laws, kinetic molecular theory, acid base equilibrium, and phase equilibrium. Nanotechnology research with biological applications will be highlighted throughout the course. Instructor Permission Required. Recommended Prerequisite(s): CHEM 570.

CHEM 575 - PHYSICAL METHODS IN INORGANIC CHEMISTRY
Short Title: PHYS METH INORGANIC CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A survey course of research techniques used in modern inorganic chemistry. Topics covered will include X-ray diffraction, matrix isolation, mass spectrometry; magnetism, electrochemistry, and various spectroscopies (IR, Raman, UV-Vis, NMR, EPR, XPS, EXAFS, and Mossbauer). Graduate/Undergraduate Equivalency: CHEM 475. Mutually Exclusive: Credit cannot be earned for CHEM 575 and CHEM 475.

CHEM 580 - MICROSCOPY METHODS IN MATERIALS SCIENCE
Short Title: MICROSCOPY METHODS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers theory and applications of electron microscopy techniques with an emphasis on transmission and scanning transmission electron microscopy (TEM, STEM). Topics include modern instrumentation and hardware, electron diffraction, imaging modes, tomography, and spectroscopy (energy dispersive x-ray spectroscopy (EDS), electron-energy loss spectroscopy (EELS), cathodoluminescence (CL)). Previous experience with electron microscopes recommended. Can be taken alone or concurrently with lab course MSNE 582. Instructor Permission Required. Cross-list: MSNE 580.

CHEM 582 - ELECTRON MICROSCOPY CENTER LAB
Short Title: ELECTRON MICROSCOPY CENTER LAB
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Corequisite: CHEM 580
Description: Hands-on laboratory using the instruments in the electron microscopy center. The students will gain the knowledge necessary to operate the instruments and analyze data independently. Must be taken concurrently with CHEM 580. Instructor Permission Required. Cross-list: MSNE 582.

CHEM 586 - CHEMICAL TOOLS FOR BIOLOGY
Short Title: CHEMICAL TOOLS FOR BIOLOGY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Corequisite: CHEM 580
Description: Enrollment is open to all students. Undergraduate enrollment requires instructor permission via special registration form. Selected topics in modern chemical biology. The development and application of chemical methods to probe, perturb, and understand biological systems. Topics include protein and DNA chemistry, classical and modern approaches to inhibitor development, and chemical reaction design in living cells. Expected to be taught Fall 2018.

CHEM 595 - TRANSITION METAL CHEMISTRY
Short Title: TRANSITION METAL CHEMISTRY
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Structure, bonding and reactivity of coordination and organometallic compounds; ligand field theory; electronic spectroscopy; magnetism; reaction mechanisms; catalysis. Graduate/Undergraduate Equivalency: CHEM 495. Mutually Exclusive: Credit cannot be earned for CHEM 595 and CHEM 495. Repeatable for Credit.
CHEM 600 - GRADUATE SEMINAR
Short Title: GRADUATE SEMINAR
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Section 1: PHYSICAL CHEMISTRY-NANO Section 2: ORGANIC AND BIOLOGICAL CHEMISTRY Section 3: NANOCHEMISTRY Section 4: CARBON NANOCHEMISTRY. This seminar series is open to all chemistry graduate students or graduate students whose home department is chemistry. Students from other departments may audit the course with instructor permission. Repeatable for Credit.

CHEM 650 - CHEMICAL PHYSICS OF CONDENSED AND BIOLOGICAL MATTER
Short Title: CHEM PHYS CONDENSED&BIO MATTER
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: The principles underlying the structure and dynamics of condensed phase and biological matter. Both experimental phenomenology and theoretical approaches will be used. Starting with a review of intermolecular forces, the course will describe the structure and thermodynamics of clusters, crystalline solids, metals, liquids, glasses and biomolecules. A unified picture of reactions and classical and quantum phase transitions in condensed matter will be presented. The energy landscape theory of the dynamics of glasses and protein folding will also be covered. Expected to be taught Fall 2018. Mutually Exclusive: Credit cannot be earned for CHEM 650 and CHEM 450.

CHEM 656 - CLASSICS IN TOTAL SYNTHESIS
Short Title: CLASSICS IN SYNTHESIS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 1.5
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): (CHEM 211 and CHEM 212 and CHEM 401 and CHEM 442)
Description: Selected total synthesis will be discussed. Special emphasis will be placed on retro-synthetic analysis, synthetic strategies and technologies, asymmetric synthesis and catalysis.

CHEM 677 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Seminar, Lecture, Internship/Practicum, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Graduate or Visiting Graduate level students.
Course Level: Graduate
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

CHEM 700 - TEACHING PRACTICUM
Short Title: TEACHING PRACTICUM
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Internship/Practicum
Credit Hours: 2
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Open to graduate students in chemistry and only in exceptional circumstances to undergraduates. Repeatable for Credit.

CHEM 800 - GRADUATE RESEARCH
Short Title: GRADUATE RESEARCH
Department: Chemistry
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-15
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Repeatable for Credit.

Department and Code Legend
Note: Internally, the university uses the following descriptions, codes, and abbreviations for this academic program. The following is a quick reference:

Course Catalog/Schedule
- Course offerings/subject code: CHEM

Department Description and Code
- Chemistry: CHEM

Undergraduate Degree Descriptions and Codes
- Bachelor of Arts degree: BA
- Bachelor of Science degree: BS

Undergraduate Major Description and Code
- Major in Chemistry: CHEM

Graduate Degree Descriptions and Codes
- Master of Arts degree: MA
- Doctor of Philosophy degree: PhD

Graduate Degree Program Description and Code
- Degree Program in Chemistry: CHEM