Bachelor of Science (BS) Degree with a Major in Environmental Science and a Major Concentration in Earth Science

Program Learning Outcomes for the BS Degree with a Major in Environmental Science

Upon completing the BS degree with a major in Environmental Science, students will be able to:

1. Demonstrate foundational knowledge in the natural sciences that is fundamental to the Environmental Sciences.
2. Integrate knowledge of natural and applied sciences to understand complex natural systems and cycles.
3. Synthesize knowledge from natural sciences and engineering and apply it to the study of the environment.
4. Understand environmental issues from a scientific perspective and be able to solve issues using a variety of interdisciplinary perspectives (e.g., social sciences, economics, humanities, and/or architecture).
5. Apply methods and theories to develop and test hypotheses or to propose and analyze solutions to environmental issues, using sound experimental, statistical, and/or design practices.

Requirements for the BS Degree with a Major in Environmental Science

For graduation requirements, see Graduation Requirements (ga.rice.edu/undergraduate-students/academic-policies-procedures/graduation-requirements). Students pursuing the BS degree with a major in Environmental Science must complete:

- A minimum of 25-28 courses (a minimum of 73-75 credit hours) depending on course selection to satisfy major requirements.
- A minimum of 133-135 credit hours to satisfy degree requirements.
- A minimum of 60 credit hours outside of major requirements.
- A minimum of 5-7 courses (15-21 credit hours, depending on declared major concentration) taken at the 300-level or above.
- The requirements of a major concentration. When students declare the major (ga.rice.edu/undergraduate-students/academic-opportunities/majors-minors-certificates/#text) in Environmental Science, students must additionally identify and declare one of two major concentrations, either in:
 - Earth Science (p. 3), or

Because of the common core requirements, it is possible for students to change their major concentration at any time, even after initially declaring the major. To do so, please contact the Office of the Registrar (registrar@rice.edu).

Environmental Science is an interdisciplinary major that addresses environmental issues in the context of what we know about earth, ecology, and society. In addition to its science core, the major also seeks to provide students with some appreciation of social, cultural, and policy dimensions of environmental issues.

The courses listed below satisfy the requirements for this major. In certain instances, courses not on this official list may be substituted upon approval of the major’s academic advisor (or official certifier). Students and their academic advisors should identify and clearly document the courses to be taken.

Summary

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Credit Hours Required for the Major in Environmental Science</td>
<td>73-75</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours Required for the BS Degree with a Major in Environmental Science</td>
<td>133-135</td>
</tr>
</tbody>
</table>

Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundation Coursework</td>
<td></td>
</tr>
<tr>
<td>BIOC 201</td>
<td>INTRODUCTORY BIOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>EBIO 202</td>
<td>INTRODUCTORY BIOLOGY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 121</td>
<td>GENERAL CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 123</td>
<td>GENERAL CHEMISTRY LABORATORY I</td>
<td></td>
</tr>
<tr>
<td>CHEM 122</td>
<td>GENERAL CHEMISTRY II</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 124</td>
<td>GENERAL CHEMISTRY LABORATORY II</td>
<td></td>
</tr>
<tr>
<td>MATH 101</td>
<td>SINGLE VARIABLE CALCULUS I</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 111</td>
<td>CALCULUS: DIFFERENTIATION AND ITS APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>MATH 102</td>
<td>SINGLE VARIABLE CALCULUS II</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 112</td>
<td>CALCULUS: INTEGRATION AND ITS APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>STAT 280</td>
<td>ELEMENTARY APPLIED STATISTICS</td>
<td>4</td>
</tr>
<tr>
<td>or STAT 305</td>
<td>INTRODUCTION TO STATISTICS FOR BIOSCIENCES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 1 from the following:</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>MECHANICS (WITH LAB)</td>
<td></td>
</tr>
<tr>
<td>& PHYS 103</td>
<td>MECHANICS DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>PHYS 111</td>
<td>HONORS MECHANICS (WITH LAB)</td>
<td></td>
</tr>
<tr>
<td>PHYS 125</td>
<td>GENERAL PHYSICS (WITH LAB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 1 from the following:</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 102</td>
<td>ELECTRICITY & MAGNETISM (WITH LAB)</td>
<td></td>
</tr>
<tr>
<td>& PHYS 104</td>
<td>ELECTRICITY AND MAGNETISM DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>PHYS 112</td>
<td>HONORS ELECTRICITY & MAGNETISM (WITH LAB)</td>
<td></td>
</tr>
<tr>
<td>PHYS 126</td>
<td>GENERAL PHYSICS II (WITH LAB)</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science (BS) Degree with a Major in Environmental Science and a Major Concentration in Earth Science

ENST 100 / ARCH 105
ENVIRONMENT, CULTURE AND SOCIETY 3

ESCI 115
INTRODUCTION TO THE EARTH 4

Select 1 from the following: 3

- ESCI 107
 OCEANS AND GLOBAL CHANGE

- ESCI 109
 OCEANOGRAPHY

- ESCI 201 / ENST 201
 THE SCIENCE BEHIND EARTH GLOBAL WARMING AND CLIMATE CHANGE

EBIO 213
INTRO EXPERIMENTAL ECOLOGY AND EVOLUTIONARY BIOLOGY 2

EBIO 325
ECOLOGY 3

ENST 4XX
SEMINAR: Topics in Environmental Science 3

Field Experience

Select 1-2 from the following 2-3

- EBIO 306
 INDEPENDENT RESEARCH FOR ECOLOGY & EVOLUTIONARY BIOLOGY UNDERGRADUATES

- EBIO 316
 LAB MODULE IN ECOLOGY

- EBIO 317
 LAB MODULE IN BEHAVIOR

- EBIO 319
 TROPICAL FIELD BIOLOGY

- EBIO 320
 ECOLOGY AND CONSERVATION OF BRAZILIAN WETLANDS LABORATORY

- EBIO 324
 CONSERVATION BIOLOGY LAB

- EBIO 327
 BIOLOGICAL DIVERSITY

- EBIO 330
 INSECT BIOLOGY LAB

- EBIO 337
 FIELD BIRD BIOLOGY LAB

- ENST 379 / EBIO 379
 LAB MODULE IN AQUATIC ECOLOGY WITH SCUBA

- ESCI 103
 FIELD TRIPS FOR THE EARTH

- ESCI 334
 GEOLOGICAL TECHNIQUES

- ESCI 380 / FOTO 390
 VISUALIZING NATURE

- FWIS 187
 EXPLORING THE SCIENCE AND HISTORY OF HOUSTON'S BAYOUS

Major Concentration

Select 1 from the following major concentrations (see below for major concentration requirements): 9

- **Earth Science**
- **Ecology and Evolutionary Biology**

Advanced Electives

Social Sciences

Select 1 from the following: 3

- ANTH 348
 ANTHROPOLOGIES OF NATURE

- ANTH 381
 MEDICAL ANTHROPOLOGY

- ENST 302 / ENST 302 / SOC 304
 ENVIRONMENTAL ISSUES: RICE INTO THE FUTURE

- ENST 332 / ANTH 332
 THE SOCIAL LIFE OF CLEAN ENERGY

- ENST 367 / SOC 367
 ENVIRONMENTAL SOCIOLOGY

- ENST 437 / ECON 437
 ENERGY ECONOMICS

- ENST 480 / ECON 480
 ENVIRONMENTAL AND ENERGY ECONOMICS

- POLI 331
 ENVIRONMENTAL POLITICS AND POLICY

- POLI 332
 URBAN POLITICS

- POLI 362
 COMPARATIVE URBAN POLITICS AND POLICY

- SOCI 313
 DEMOGRAPHY

- SOCI 423
 SOCIOLOGY OF FOOD

Humanities and Architecture

Select 1 from the following: 3

- ENGL 358
 CONSUMPTION AND CONSUMERISM

- ENGL 367 / SWGS 367
 LITERATURE AND CULTURE OF THE US-MEXICO BORDERLANDS

- ENGL 459
 TOPICS IN LITERATURE AND ECOLOGY

- ENST 202 / HUMA 202
 CULTURE, ENERGY, AND THE ENVIRONMENT: AN INTRODUCTION TO ENERGY HUMANITIES

- ENST 313 / ARCH 313
 SUSTAINABLE DESIGN

- ENST 322 / ARCH 322
 CASE STUDIES IN SUSTAINABILITY: THE REGENERATIVE REPOSITIONING OF NEW OR EXISING RICE CAMPUS BU

- ENST 368 / ENGL 368
 LITERATURE AND THE ENVIRONMENT

- HIST 376
 NATURAL DISASTERS IN THE CARIBBEAN

- HIST 425
 20TH CENTURY AMERICAN CONSERVATION MOVEMENT

Natural Sciences and Engineering

Select 1 from the following: 4

- CEVE 302 / ENGI 302
 SUSTAINABLE DESIGN

- CEVE 308
 INTRODUCTION TO AIR POLLUTION CONTROL

- CEVE 401
 CHEMISTRY FOR ENVIRONMENTAL ENGINEERING AND SCIENCE LAB

- CEVE 404
 ATMOSPHERIC PARTICULATE MATTER

- CEVE 411
 ATMOSPHERIC PROCESSES

- CEVE 412
 HYDROLOGY AND WATER RESOURCES ENGINEERING

- CEVE 420
 ENVIRONMENTAL REMEDIATION RESTORATION

- CEVE 434
 FATE AND TRANSPORT OF CONTAMINANTS IN THE ENVIRONMENT

- CEVE 484 / STAT 484
 ENVIRONMENTAL RISK ASSESSMENT & HUMAN HEALTH

- CHEM 211 & CHEM 213
 ORGANIC CHEMISTRY I and ORGANIC CHEMISTRY DISCUSSION

- ENST 281
 ENGINEERING SOLUTIONS FOR SUSTAINABLE COMMUNITIES

- ENST 307 / CEVE 307 / ESCI 307
 ENERGY AND THE ENVIRONMENT

- ENST 406 / CEVE 406
 INTRODUCTION TO ENVIRONMENTAL LAW

Independent Research (see the "Opportunities tab" for additional information).

Capstone Requirement

Select 1 from the following: 3
Major Concentration: Earth Science
Students must complete a total of 3 courses (minimum of 9 credit hours) as listed below to satisfy requirements for the major concentration in Earth Science. #Earth_Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core Requirements</td>
<td></td>
</tr>
<tr>
<td>Select 2 from the following:</td>
<td></td>
<td>6-7</td>
</tr>
<tr>
<td>ESCI 321</td>
<td>EARTH SYSTEM EVOLUTION AND CYCLES</td>
<td></td>
</tr>
<tr>
<td>ESCI 323</td>
<td>EARTH STRUCTURE AND DEFORMATION</td>
<td></td>
</tr>
<tr>
<td>ESCI 340 / EBIO 340 / ENST 340</td>
<td>GLOBAL BIOGEOCHEMICAL CYCLES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective Requirements</td>
<td></td>
</tr>
<tr>
<td>Select at least 1 from the following:</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>ESCI 321</td>
<td>EARTH SYSTEM EVOLUTION AND CYCLES</td>
<td></td>
</tr>
<tr>
<td>ESCI 322</td>
<td>EARTH CHEMISTRY AND MATERIALS</td>
<td></td>
</tr>
<tr>
<td>ESCI 323</td>
<td>EARTH STRUCTURE AND DEFORMATION</td>
<td></td>
</tr>
<tr>
<td>ESCI 340 / EBIO 340 / ENST 340</td>
<td>GLOBAL BIOGEOCHEMICAL CYCLES</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes and Additional Information
- Includes coursework completed as distribution credit, FWIS, LPAR, upper-level, residency (hours taken at Rice), 60 hours outside of the major (if applicable), and any additional academic program requirements. The "hours outside of the major" requirement may include all of the above university requirements.
- CHEM 121 and CHEM 123 can be satisfied by completing CHEM 151 and CHEM 153. Similarly, CHEM 122 and CHEM 124 can be satisfied by completing CHEM 152 and CHEM 154.
- The core courses acquaint students with a range of environmental topics encountered by scientists, engineers, managers, and policy makers. Core courses stress the components of the global environment and their interactions, culminating with a tropical seminar that integrates across the field.
- Students may also petition to complete alternative courses to be applied toward the Advanced Electives requirement.
- In addition, students may complete 1 course listed in the major concentration requirements outside of the student’s declared concentration.
- Students are encouraged, but not required, to undertake independent research on environmentally related topics.

Bachelor of Science (BS) Degree with a Major in Environmental Science and a Major Concentration in Earth Science

Policies for the BS Degree with a Major in Environmental Science and a Major Concentration in Earth Science

Transfer Credit
For Rice University's policy regarding transfer credit, see Transfer Credit (ga.rice.edu/undergraduate-students.academic-policies-procedures/transfer-credit). Some departments and programs have additional restrictions on transfer credit. The Office of Academic Advising maintains the university's official list of transfer credit advisors on their website: http://oaa.rice.edu. Students are encouraged to meet with their academic program's transfer credit advisor when considering transfer credit possibilities.

Program Transfer Credit Guidelines
Students pursuing the major in Environmental Science should be aware of the following program transfer credit guidelines:

- Requests for transfer credit will be considered by the program director (and/or the program's official transfer credit advisor) on an individual case-by-case basis.

For additional information, please see the Department of Earth, Environmental, and Planetary Sciences website, and specifically the Environmental Science major page, at: http://earthscience.rice.edu/academics/undergraduate-program/

Opportunities for the BS Degree with a Major in Environmental Science and a Major Concentration in Earth Science

Independent Research
Students are encouraged to undertake independent research on environmentally related topics as part of their degree programs, in
cooperation with one or more faculty. Course options for independent research, repeatable for credit, include: EBIO 403, EBIO 404, and ESCI 481.

Students also can enroll in senior honors thesis programs within their major concentrations, or by arrangement with other departments, and/or through the Rice Undergraduate Scholars Program. Students completing a thesis will also be eligible for the Distinction in Research and Creative Work, a university honor. Details for each program can be found here:

- **EBIO Honors Research**
 (https://biosciences.rice.edu/Content.aspx?id=2147484071)

- **ESCI Senior Honors Thesis**
 (http://earthscience.rice.edu/academics/undergraduate-program/honors-thesis)

- **Rice Undergraduate Scholars Program**
 (https://ccl.rice.edu/learn/undergraduate-research/rice-undergraduate-scholars-program-rusp/)

For additional information, please see the Department of Earth, Environmental, and Planetary Sciences website, and specifically the Environmental Science major page, at: http://earthscience.rice.edu/academics/undergraduate-program/