The Department of Physics and Astronomy offers undergraduate and graduate programs for a wide range of interests. The bachelor of arts degree with majors in physics or astronomy is suitable for students who wish to obtain a broad liberal arts education with a concentration in a physical science. The bachelor of science degree with majors in physics, astrophysics, or chemical physics provides preparation for employment or further study in physics, astrophysics, and related technical fields. The minor in physics provides a solid foundation in physics with additional advanced physics topics of the student’s choosing.

Research facilities and thesis supervision are available for MS and PhD students in atomic, molecular, and optical physics; biophysics; condensed matter physics; galactic astronomy; high energy astrophysics, nuclear and particle physics; and space physics.

**Bachelor's Programs**

- Bachelor of Science (BS) Degree with a Major in Astrophysics ([https://ga.rice.edu/programs-study/departments-programs/natural-sciences/physics-astronomy/astrophysics-bs/](https://ga.rice.edu/programs-study/departments-programs/natural-sciences/physics-astronomy/astrophysics-bs/))
- Bachelor of Science (BS) Degree with a Major in Physics

**Minor**


**Coordinated Program**

- Bachelor of Science (BS) Degree with a Major in Chemical Physics ([https://ga.rice.edu/programs-study/departments-programs/natural-sciences/chemical-physics/chemical-physics-bs/](https://ga.rice.edu/programs-study/departments-programs/natural-sciences/chemical-physics/chemical-physics-bs/))

  *This degree is jointly managed by the Department of Chemistry and the Department of Physics and Astronomy. For more information, see Chemical Physics. ([https://ga.rice.edu/programs-study/departments-programs/natural-sciences/chemical-physics/chemical-physics-bs/](https://ga.rice.edu/programs-study/departments-programs/natural-sciences/chemical-physics/chemical-physics-bs/))*

**Master's Program**

- Master of Science (MS) Degree in the field of Physics*

**Doctoral Program**


  *Although students are not normally admitted to a Master of Science (MS) degree program, graduate students may earn the MS as they work towards the PhD.*

**Coordinated Program**


**Chair**

Douglas Natelson

**Professors**

David Alexander
Matthew G. Baring
Anthony A. Chan
Cecilia Clementi
Pengcheng Dai
Michael W. Deem
F. Barry Dunning
Karl M. Ecklund
Franciscus Johannes Maria Geurts
Jason H. Hafner
Naomi J. Halas
Patrick M. Hartigan
Huey W. Huang
Randall G. Hulet
Christopher M. Johns-Krull
Thomas C. Killian
Anatoly B. Kolomeisky
Junichiro Kono
Eugene H. Levy
Edison P. Liang
Frederick C. MacKintosh
Emilia Morosan
To view the list of official course offerings, please see Rice's Course Catalog (https://courses.rice.edu/admweb/!SWKSCAT.cat?p_action=cata)
To view the most recent semester's course schedule, please see Rice's Course Schedule (https://courses.rice.edu/admweb/!SWKSCAT.cat)

**Astronomy (ASTR)**

**ASTR 100 - EXPLORING THE COSMOS**
Short Title: EXPLORING THE COSMOS  
Department: Physics and Astronomy  
Grade Mode: Standard Letter  
Course Type: Seminar  
Credit Hour: 1  
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
Course Level: Undergraduate Lower-Level  
Description: Introduction to concepts, methods and discoveries of astronomy and astrophysics, with a theme to be chosen from the frontier topics of modern astrophysics. Will emphasize student presentations. Designed for first year students interested in science or engineering, but other majors are welcome.

**ASTR 101 - STARS, GALAXIES, AND THE UNIVERSE**
Short Title: STARS, GALAXIES & THE UNIVERSE  
Department: Physics and Astronomy  
Grade Mode: Standard Letter  
Course Type: Lecture  
Distribution Group: Distribution Group III  
Credit Hours: 3  
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
Course Level: Undergraduate Lower-Level  
Description: An introductory course for students in academic programs. The formation, evolution, and death of stars; the composition and evolution of galaxies; the structure and evolution of the universe.

**ASTR 102 - EXPLORATION OF THE SOLAR SYSTEM**
Short Title: EXPLORATN OF THE SOLAR SYSTEM  
Department: Physics and Astronomy  
Grade Mode: Standard Letter  
Course Type: Lecture  
Distribution Group: Distribution Group III  
Credit Hours: 3  
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
Course Level: Undergraduate Lower-Level  
Description: The physical processes governing the nature and behavior of the various Solar System bodies are discussed with a focus on the origins, evolution and fate of the Solar System and its parts. This broader context leads to a deeper understanding of the Earth as a life-supporting planet.
ASTR 221 - OBSERVING THE NIGHT SKY
Short Title: OBSERVING THE NIGHT SKY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: An introduction to the celestial sphere and movements of the sun, moon, and planets. Students will gain hands-on experience using computerized telescopes, binoculars, digital imagers, and planetarium software to study astronomical objects. Intended for students in all types of academic programs.

ASTR 230 - ASTRONOMY LAB
Short Title: ASTRONOMY LAB
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: A hands-on introduction to modern techniques of observational astronomy. Students use telescopes, CCDs, and computers to obtain and analyze their own images and spectra of solar system, galactic, and extragalactic objects. The course employs the campus observatory, dark sky observing sites, and state of the art data analysis software. Instructor Permission Required.

ASTR 238 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Seminar, Lecture, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

ASTR 243 - LIVING WITH A STAR: THE PHYSICS OF THE SUN-EARTH CONNECTION
Short Title: LIVING WITH A STAR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Prerequisite(s): (MATH 102 or MATH 106) and (PHYS 102 or PHYS 126)
Description: Introduction to astrophysical processes, particularly the effect of the Sun on the Earth. Possible effects of solar variability will be considered, especially global warming. The observational and theoretical basis of our current understanding will be presented.

ASTR 350 - INTRODUCTION TO ASTROPHYSICS-STARS
Short Title: INTRO ASTROPHYSICS-STARS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): MATH 211 and PHYS 202
Description: Introduction to celestial mechanics, radiative transfer, stellar structure, and stellar remnants (including black holes and neutron stars). Aspects of stellar atmospheres may also be explored. Together, ASTR 350 and ASTR 360 provide a comprehensive survey of modern astrophysics needed for senior research and graduate study in astronomy. Either ASTR 350 or 360 may be taken first. Recommended Prerequisite(s): MATH 212

ASTR 360 - INTRODUCTION TO ASTROPHYSICS-GALAXY AND COSMO
Short Title: INTRO ASTROPHYSIC-GALAXY&COSMO
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): MATH 211 and PHYS 202 (may be taken concurrently)
Description: Morphology, kinematics, and dynamics of the Milky Way and external galaxies, including interstellar matter and evidence for dark matter. Peculiar and active galaxies, including interacting systems and evidence for super massive black holes in active galactic nuclei such as quasars. Large-scale structure and expansion of the universe, including various cosmologies ranging from the inflationary big bang theory to steady state and anthropic concepts. Either ASTR 350 or 360 may be taken first. PHYS 202 may be taken as a prereq or concurrently with ASTR 360.

ASTR 400 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Seminar on current research topics in astronomy, astrophysics, and space physics for juniors and seniors. Students will be expected to give one oral presentation each semester. Graduate/Undergraduate Equivalency: ASTR 500. Repeatable for Credit.
ASTR 408 - STATISTICAL METHODS IN PHYSICS AND ASTRONOMY
Short Title: STATISTICS IN PHYS AND ASTRONOMY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (PHYS 101 or PHYS 111) and (PHYS 102 or PHYS 112) and MATH 212
Description: Statistical methods commonly used in the analysis of astronomical, laboratory, and survey data. Topics include curve fitting, parametric and non-parametric hypothesis testing, cluster analysis, principal component analysis, time-series data, and truncated data. Fundamentals of statistics, including probability distributions, means, variances, the Central Limit Theorem, hypothesis testing, error propagation, Bayesian analysis, jackknife, and bootstrap are covered. The class introduces students to the R programming language. Graduate/Undergraduate Equivalency: ASTR 508. Mutually Exclusive: Cannot register for ASTR 408 if student has credit for ASTR 508.

ASTR 451 - ASTROPHYSICS I: SUN AND STARS
Short Title: ASTROPHYSICS I: SUN AND STARS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (ASTR 350 or ASTR 360) and (PHYS 301 and PHYS 302)
Description: Physics of stellar atmospheres, interiors and evolution. Polytropes, nucleosynthesis, radiative transfer, convection, oscillations, opacities, curves of growth, spectral line theory and observation.

ASTR 452 - ASTROPHYSICS II: GALAXIES AND COSMOLOGY
Short Title: ASTROPHYSICS II: GALAXIES AND COSMOLOGY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (ASTR 350 or ASTR 360) and (PHYS 301 and PHYS 302)
Description: Study of physical cosmology models. Description of the evolution of the universe, including nucleosynthesis, cosmic background radiation, large-scale structure, galaxy formation and evolution, and high redshift phenomena.

ASTR 470 - SOLAR SYSTEM PHYSICS
Short Title: SOLAR SYSTEM PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 301 and PHYS 302
Description: The Sun, solar-terrestrial relationships, solar wind; planetary atmospheres, ionospheres and magnetospheres. Graduate/Undergraduate Equivalency: ASTR 570. Mutually Exclusive: Cannot register for ASTR 470 if student has credit for ASTR 570.

ASTR 477 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Lecture, Seminar, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Topics and credit hours may vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

ASTR 500 - GRADUATE RESEARCH SEMINAR
Short Title: GRADUATE RESEARCH SEMINAR
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A presentation of current research programs in the department. Graduate/Undergraduate Equivalency: ASTR 400. Repeatable for Credit.

ASTR 502 - TEACHING EARTH AND SPACE SCIENCE
Short Title: TEACHING EARTH & SPACE SCIENCE
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Overview of the Earth and the solar system: structure, evolution, and dynamics. Includes non-calculus mathematics: algebra, logarithms and simple trigonometry, including Kepler’s laws. Observing sessions at campus observatory and George Observatory TBD. Designed for inservice and preservice science teachers (grades 4-12), but open to undergraduates considering a teaching career. Mutually Exclusive: Cannot register for ASTR 502 if student has credit for ASTR 402.
ASTR 503 - ASTRONOMY FOR TEACHERS
Short Title: ASTRONOMY FOR TEACHERS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Overview of the Sun, stars, galaxies, and the Universe at a non-calculus level. Methods to help students master content, including lab activities suitable for K-12. Observing sessions at Rice campus observatory and George Observatory TBD. Designed for inservice and preservice teachers (grades 5-12), but open to undergraduates considering a teaching career.

ASTR 505 - PROCESSES IN COSMIC PLASMAS
Short Title: PROCESSES IN COSMIC PLASMAS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): ASTR 470 and PHYS 480
Description: Study of plasma phenomena that occur widely in nature. May include quasi-static equilibrium, magnetic equilibrium, magnetic reconnection, particle acceleration, plasma winds and jets, and interchange instabilities.

ASTR 508 - STATISTICAL METHODS IN PHYSICS AND ASTRONOMY
Short Title: STATISTICS IN PHYS AND ASTR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Statistical methods commonly used in the analysis of astronomical, laboratory, and survey data. Topics include curve fitting, parametric and non-parametric hypothesis testing, cluster analysis, principal component analysis, time-series data, and truncated data. Fundamentals of statistics, including probability distributions, means, variances, the Central Limit Theorem, hypothesis testing, error propagation, Bayesian analysis, jackknife, and bootstrap are covered. The class introduces students to the R programming language. Graduate/Undergraduate Equivalency: ASTR 408. Mutually Exclusive: Cannot register for ASTR 508 if student has credit for ASTR 408.
Course URL: http://www.sparky.rice.edu/~hartigan/astr600/astr600.html

ASTR 530 - TEACHING ASTRONOMY LABORATORY
Short Title: TEACHING ASTRONOMY LABORATORY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): ASTR 230 or ASTR 350 or ASTR 360 or ASTR 402 or ASTR 403 or ASTR 502 or ASTR 503
Description: Methods of observational astronomy for public education: telescopes, astronomical binoculars, portable planetariums, digital cameras, and photography (still, 3D, and time lapse). Students will train beginners in the use of telescopes and carry out a modest observational program. The course requires one public presentation. Topics vary with each offering. Mutually Exclusive: Cannot register for ASTR 530 if student has credit for ASTR 430.

ASTR 542 - NEBULAR ASTROPHYSICS
Short Title: NEBULAR ASTROPHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): ASTR 451
Description: The physics of emission nebulae, including radiative transfer, photo ionization and thermal equilibria, and internal gaseous dynamics. Physical processes in the interstellar medium. Recommended Prerequisite(s): PHYS 541.

ASTR 554 - ASTROPHYSICS OF THE SUN
Short Title: ASTROPHYSICS OF THE SUN
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Analysis of physical processes at work in the sun, such as heliosseismology, solar variability, solar activity, magnetic reconnection, heliosphere interactions and modern observational techniques.

ASTR 555 - PROTOSTARS AND PLANETS
Short Title: PROTOSTARS AND PLANETS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): ASTR 451
Description: Physics of star and planet information, including molecular cloud dynamics and chemistry, circumstellar accretion disks, jets, dust, debris disks, atmospheres rotation, and magnetic fields of young stars, binaries, brown dwarfs, comets, Kuiper belt objects, giant planet formation and discoveries of extra solar planets.
ASTR 565 - COMPACT OBJECTS
Short Title: COMPACT OBJECTS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Selected topics involving white dwarfs, neutron stars, black holes and their environments, e.g., pulsars, supernova remnants, and accretion disks.

ASTR 570 - SOLAR SYSTEM PHYSICS
Short Title: SOLAR SYSTEM PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: The Sun, solar-terrestrial relationships, solar wind; planetary atmospheres, ionospheres and magnetospheres. Includes a research paper and presentation on a physical process in the solar system. Graduate/Undergraduate Equivalency: ASTR 470. Mutually Exclusive: Cannot register for ASTR 570 if student has credit for ASTR 470.

ASTR 600 - ADVANCED TOPICS IN ASTROPHYSICS
Short Title: ADV TOPICS IN ASTROPHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Lecture/seminars which treat topics of departmental interest. Not offered every year. Repeatable for Credit.

ASTR 677 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Lecture, Seminar, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Graduate or Visiting Graduate level students.
Course Level: Graduate
Description: Topics and credit hours vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

PHYS 101 - MECHANICS (WITH LAB)
Short Title: MECHANICS (WITH LAB)
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 103
Description: A calculus-based introduction to mechanics. Includes classes and lab exercises on kinematics, Newton's Laws, work and energy, conservation laws and rotational motion. Primarily for physical science and engineering students. May receive credit for only one of PHYS 101, 111, 125, AP-Physics-B (PHYS 141 and 142) and AP Physics-C MECH. Students must register for PHYS 103.

PHYS 102 - ELECTRICITY & MAGNETISM (WITH LAB)
Short Title: ELECTRICITY&MAGNETISM W/LAB
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Distribution Group: Distribution Group III
Credit Hours: 4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 104
Description: A calculus-based introduction to electricity and magnetism. Includes classes and lab exercises on electric and magnetic fields, Maxwell's equations in integral form, and AC and DC circuits. Primarily for physical science and engineering students. May receive credit for only one of PHYS 102, 112, 126, AP-Physics-B (PHYS 141 and 142) and AP Physics-C E&M. Students must also register for PHYS 104.

PHYS 103 - MECHANICS DISCUSSION
Short Title: MECHANICS DISCUSSION
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 0
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 101
Description: Small group discussion section to extend and reinforce concepts presented in PHYS 101. Students must also register for PHYS 101.

PHYS 104 - ELECTRICITY AND MAGNETISM DISCUSSION
Short Title: E & M DISCUSSION
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hours: 0
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Lower-Level
Corequisite: PHYS 102
Description: Small group discussion section to extend and reinforce concepts presented in PHYS 102. Students must also register for PHYS 102.
<table>
<thead>
<tr>
<th>Short Title</th>
<th>Course Level</th>
<th>Restrictions</th>
<th>Credit Hours</th>
<th>Distribution Group</th>
<th>Course Type</th>
<th>Grade Mode</th>
<th>Department</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 116 - SEMINAR IN PHYSICS AND ASTRONOMY AT RICE AND BEYOND</td>
<td>Undergraduate Lower-Level</td>
<td>Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>A more intensive treatment of topics covered in PHYS 101, intended for physical science and engineering students with strong high school backgrounds in physics and particularly calculus. May receive credit for only one of PHYS 101, 111, 125, AP Physics-B (PHYS 141 and 142), and AP Physics-C MECH.</td>
</tr>
<tr>
<td>PHYS 111 - HONORS MECHANICS (WITH LAB)</td>
<td>Professional or Visiting Undergraduate level students.</td>
<td></td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>Enroll in Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
</tr>
<tr>
<td>PHYS 112 - HONORS ELECTRICITY &amp; MAGNETISM (WITH LAB)</td>
<td>Professional or Visiting Undergraduate level students.</td>
<td></td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>Enroll in Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
</tr>
<tr>
<td>PHYS 125 - GENERAL PHYSICS (WITH LAB)</td>
<td>Professional or Visiting Undergraduate level students.</td>
<td></td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>Enroll in Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
</tr>
<tr>
<td>PHYS 126 - GENERAL PHYSICS II (WITH LAB)</td>
<td>Professional or Visiting Undergraduate level students.</td>
<td></td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>Enroll in Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.</td>
</tr>
<tr>
<td>PHYS 141 - CONCEPTS IN PHYSICS I</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>3</td>
<td>Distribution Group III</td>
<td>Lecture</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>This half-semester seminar course will meet in the first half of the Spring semester to introduce prospective and current science and engineering majors to the exciting research in physics and astronomy at Rice and beyond. The course will provide students with the context to think about how the facts presented in physics and astronomy textbooks are applied to real-world research. Undergraduate students in a small group will meet weekly with a graduate student to explore a published research article by a local lab, learning about what was done and why it was important. Toward the end of the course, the group will tour the lab that produced the featured article. All students are eligible to enroll in PHYS 116 regardless of the intended area of study.</td>
</tr>
<tr>
<td>PHYS 142 - CONCEPTS IN PHYSICS II</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>3</td>
<td>Distribution Group III</td>
<td>Lecture</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>This half-semester seminar course will meet in the first half of the Spring semester to introduce prospective and current science and engineering majors to the exciting research in physics and astronomy at Rice and beyond. The course will provide students with the context to think about how the facts presented in physics and astronomy textbooks are applied to real-world research. Undergraduate students in a small group will meet weekly with a graduate student to explore a published research article by a local lab, learning about what was done and why it was important. Toward the end of the course, the group will tour the lab that produced the featured article. All students are eligible to enroll in PHYS 116 regardless of the intended area of study.</td>
</tr>
<tr>
<td>PHYS 125 - GENERAL PHYSICS (WITH LAB)</td>
<td>Professional or Visiting Undergraduate level students.</td>
<td></td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>A calculus-based survey of mechanics primarily intended for bioscience and premedical students. Includes classes and lab exercises on kinematics, Newton's Laws, work and energy, rotational motion, fluids, oscillations and waves. May receive credit for only one of PHYS 101, 111, 125, AP Physics-B (PHYS 141 and 142), and AP Physics-C MECH.</td>
</tr>
<tr>
<td>PHYS 112 - HONORS ELECTRICITY &amp; MAGNETISM (WITH LAB)</td>
<td>Professional or Visiting Undergraduate level students.</td>
<td></td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>A more intensive treatment of topics covered in PHYS 102, intended for physical science and engineering students with strong high school backgrounds in physics and particularly calculus. May receive credit for only one of PHYS 102, 112, 126, AP Physics-B (PHYS 141 and 142), and AP Physics-C E&amp;M.</td>
</tr>
<tr>
<td>PHYS 126 - GENERAL PHYSICS II (WITH LAB)</td>
<td>Professional or Visiting Undergraduate level students.</td>
<td></td>
<td>4</td>
<td>Distribution Group III</td>
<td>Lecture/Laboratory</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>A calculus-based survey of mechanics primarily intended for bioscience and premedical students. Includes classes and lab exercises on wave and ray optics, electric field and potential, magnetic fields and induction, and DC circuits. May receive credit for only one of PHYS 102, 112, 126, AP Physics-B (PHYS 141 and 142), and AP Physics-C E&amp;M.</td>
</tr>
<tr>
<td>PHYS 141 - CONCEPTS IN PHYSICS I</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>3</td>
<td>Distribution Group III</td>
<td>Lecture</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>A calculus-based survey of E&amp;M and optics primarily intended for bioscience and premedical students. Includes classes and lab exercises on wave and ray optics, electric field and potential, magnetic fields and induction, and DC circuits. May receive credit for only one of PHYS 102, 112, 126, AP Physics-B (PHYS 141 and 142), and AP Physics-C E&amp;M.</td>
</tr>
<tr>
<td>PHYS 142 - CONCEPTS IN PHYSICS II</td>
<td>Undergraduate Lower-Level</td>
<td></td>
<td>3</td>
<td>Distribution Group III</td>
<td>Lecture</td>
<td>Standard Letter</td>
<td>Physics and Astronomy</td>
<td>A calculus-based survey of E&amp;M and optics primarily intended for bioscience and premedical students. Includes classes and lab exercises on wave and ray optics, electric field and potential, magnetic fields and induction, and DC circuits. May receive credit for only one of PHYS 102, 112, 126, AP Physics-B (PHYS 141 and 142), and AP Physics-C E&amp;M.</td>
</tr>
</tbody>
</table>
### PHYS 143 - PHYSICS FOR CITIZENSHIP
**Short Title:** PHYSICS FOR CITIZENSHIP  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Distribution Group:** Distribution Group III  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Lower-Level  
**Description:** Physics is critical to our understanding of nuclear weapons, radiation, electronics, energy and global warming. The most interesting and important topics in physics, with applications to current events will be presented. Topics covered may include energy and conservation, radioactivity, nuclear physics, the Theory of Relativity, lasers, explosions and quantum physics.

### PHYS 201 - WAVES, LIGHT, AND HEAT
**Short Title:** WAVES, LIGHT, AND HEAT  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Distribution Group:** Distribution Group III  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Lower-Level  
**Description:** This course explores our scientific understanding of sound and music by studying the properties of sound and its production by a variety of musical instruments. Additional topics include an analysis of musical scales, the physiology of hearing, and the technology of sound reproduction. For non-science and non-engineering majors.

### PHYS 202 - MODERN PHYSICS
**Short Title:** MODERN PHYSICS  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Lower-Level  
**Description:** Mathematical descriptions of fundamental topics of classical physics: oscillations, mechanical waves, electromagnetic waves, physical optics and thermodynamics.

### PHYS 231 - ELEMENTARY PHYSICS LAB
**Short Title:** ELEMENTARY PHYSICS LAB  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Laboratory  
**Credit Hour:** 1  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Lower-Level  
**Description:** Laboratory on waves, optics and modern physics.

### PHYS 238 - SPECIAL TOPICS
**Short Title:** SPECIAL TOPICS  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture/Laboratory, Internship/Practicum, Independent Study, Laboratory, Lecture, Seminar  
**Credit Hours:** 1-4  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Lower-Level  
**Description:** Topics and credit hours may vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

### PHYS 301 - INTERMEDIATE MECHANICS
**Short Title:** INTERMEDIATE MECHANICS  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 4  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** PHYS 201  
**Description:** Classical mechanics and appropriate mathematical methods. Emphasis on problem solving.

### PHYS 302 - INTERMEDIATE ELECTRODYNAMICS
**Short Title:** INTERMEDIATE ELECTRODYNAMICS  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 4  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** PHYS 201  
**Description:** Classical electrodynamics and appropriate mathematical methods. Emphasis on problem solving.

### PHYS 311 - INTRODUCTION TO QUANTUM PHYSICS I
**Short Title:** INTRO TO QUANTUM PHYSICS I  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.  
**Course Level:** Undergraduate Upper-Level  
**Prerequisite(s):** PHYS 202  
**Description:** Fundamentals of quantum mechanics and applications to atomic and molecular structure.
PHYS 312 - INTRODUCTION TO QUANTUM PHYSICS II
Short Title: INTRO TO QUANTUM PHYSICS II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Continuation of PHYS 311.

PHYS 331 - JUNIOR PHYSICS LAB I
Short Title: JUNIOR PHYSICS LAB I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Lab exercises in electronics, noise reduction, statistics and particle counting.

PHYS 332 - JUNIOR PHYSICS LAB II
Short Title: JUNIOR PHYSICS LAB II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Laboratory
Credit Hours: 2
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Lab exercises illustrating topics in the upper-division physics curriculum.

PHYS 355 - INTRODUCTION TO BIOLOGICAL PHYSICS
Short Title: INTRO TO BIOLOGICAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level

PHYS 411 - INTRODUCTION TO NUCLEAR & PARTICLE PHYSICS
Short Title: INTRO NUCLEAR&PARTIC PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 311
Description: Survey of history and current state of nuclear and particle physics. The emphasis is on experimental results and how they led to our current understanding of the strong and electroweak interactions. Some recent advances are discussed in detail. Graduate/Undergraduate Equivalency: PHYS 542. Mutually Exclusive: Cannot register for PHYS 411 if student has credit for PHYS 542.

PHYS 412 - SOLID STATE PHYSICS
Short Title: SOLID STATE PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): (PHYS 311 and PHYS 425) or ELEC 361
Description: Introduction to topics in solid state physics, including crystal structure, lattice vibrations, electronic band structure and transport.

PHYS 416 - COMPUTATIONAL PHYSICS
Short Title: COMPUTATIONAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Use of computational techniques to solve selected physics problems. Examine benefits and pitfalls of doing physics by computation. Graduate/Undergraduate Equivalency: PHYS 517. Mutually Exclusive: Cannot register for PHYS 416 if student has credit for PHYS 517.

PHYS 425 - STATISTICAL & THERMAL PHYSICS
Short Title: STATISTICAL & THERMAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Use of computational techniques to solve selected physics problems. Examine benefits and pitfalls of doing physics by computation. Graduate/Undergraduate Equivalency: PHYS 517. Mutually Exclusive: Cannot register for PHYS 416 if student has credit for PHYS 517.

PHYS 425 - STATISTICAL & THERMAL PHYSICS
Short Title: STATISTICAL & THERMAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 301 and PHYS 311
Description: Includes classical thermodynamics; classical & quantum statistical mechanics; Fermi, Bose, and classical gases; magnetic systems; and phase equilibria.
PHYS 461 - INDEPENDENT RESEARCH
Short Title: INDEPENDENT RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-6
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Mentored research under the supervision of a Physics and Astronomy faculty member. To register, students must provide a research plan approved by the faculty mentor. Instructor Permission Required. Repeatable for Credit.

PHYS 462 - INDEPENDENT RESEARCH
Short Title: INDEPENDENT RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-6
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Mentored research under the supervision of a Physics and Astronomy faculty member. To register, students must provide a research plan approved by the faculty mentor. Instructor Permission Required. Repeatable for Credit.

PHYS 465 - REU RESEARCH IN PHYSICS AND ASTRONOMY
Short Title: REU RESEARCH IN PHYS & ASTR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 1-3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Repeatable for Credit.

PHYS 477 - SPECIAL TOPICS
Short Title: SPECIAL TOPICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Internship/Practicum, Seminar, Lecture, Laboratory
Credit Hours: 1-4
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Description: Topics and credit hours may vary each semester. Contact department for current semester's topic(s). Repeatable for Credit.

PHYS 480 - INTRODUCTION TO PLASMA PHYSICS
Short Title: INTRODUCTION TO PLASMA PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 302
Description: Fundamental processes in cosmic and laboratory plasmas. Basic plasma characteristics, charged particle motion, waves in plasmas, magnetohydrodynamics, kinetic theory. Graduate/Undergraduate Equivalency: PHYS 580. Mutually Exclusive: Cannot register for PHYS 480 if student has credit for PHYS 580.

PHYS 491 - UNDERGRADUATE RESEARCH
Short Title: UNDERGRADUATE RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 2
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 301 and PHYS 302 and PHYS 311
Description: Research projects conducted under supervision of departmentally approved faculty. Open to juniors and seniors majoring in physics and astronomy. May be repeated for credit. PHYS 493/494 must be taken concurrently with PHYS 491/492 when used in partial fulfillment of B.S. degree requirements. Repeatable for Credit.

PHYS 492 - UNDERGRADUATE RESEARCH
Short Title: UNDERGRADUATE RESEARCH
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Research
Credit Hours: 2
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 491
Description: Research projects conducted under supervision of departmentally approved faculty culminating in a thesis. Open to juniors and seniors majoring in physics and astronomy. May be repeated for credit. PHYS 493/494 must be taken concurrently with PHYS 491/492 when used in partial fulfillment of B.S. degree requirements. Repeatable for Credit.
PHYS 493 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 493
Description: Weekly seminar for juniors and seniors in which presentations on research topics and/or topics in the scientific literature will be given. Open to juniors and seniors majoring in physics and astronomy. Repeatable for Credit.

PHYS 494 - UNDERGRADUATE RESEARCH SEMINAR
Short Title: UNDERGRADUATE RESEARCH SEMINAR
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment limited to students with a class of Junior or Senior. Enrollment is limited to students with a major in Astronomy, Astrophysics, Chemical Physics or Physics. Enrollment is limited to Undergraduate, Undergraduate Professional or Visiting Undergraduate level students.
Course Level: Undergraduate Upper-Level
Prerequisite(s): PHYS 494
Description: Weekly seminar for juniors and seniors in which presentations on research topics and/or topics in the scientific literature will be given. Open to juniors and seniors majoring in physics and astronomy. Repeatable for Credit.

PHYS 501 - PHYSICS OF HAM RADIO FOR TEACHERS
Short Title: PHYSICS OF HAM RADIO TEACHERS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Fundamentals of electromagnetic waves and propagation, the ionosphere and space weather. Basic electronics, antenna design and safety, magnetism. Provides information necessary to pass the "Technician" level of ham radio license. Non-calculus mathematics. Other topics include: use of GPS, geocaching. Mutually Exclusive: Cannot register for PHYS 501 if student has credit for PHYS 401.

PHYS 510 - MAGNETOSPHERIC PHYSICS
Short Title: MAGNETOSPHERIC PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Plasma physics of the earth's magnetosphere, including interactions of the magnetosphere with the solar wind and the ionosphere. The emphasis is on large-scale phenomena, but small scale (kinetic) physics is discussed in cases where it affects the large-scale phenomena.

PHYS 515 - CLASSICAL DYNAMICS
Short Title: CLASSICAL DYNAMICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Lagrangian and Hamiltonian mechanics.

PHYS 516 - MATHEMATICAL METHODS
Short Title: MATHEMATICAL METHODS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Survey of analytical methods used by research physicists and astronomers. Includes complex variables, ordinary differential equations, infinite series, evaluation of integrals, integral transforms, normal-mode analysis, special functions, partial differential equations, eigenfunctions, Green's functions, and variational calculus.

PHYS 517 - COMPUTATIONAL PHYSICS
Short Title: COMPUTATIONAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Use of computational techniques to solve selected physics problems. Examine benefits and pitfalls of doing physics by computation. Requires completion of project using a low-level programming language. Graduate/Undergraduate Equivalency: PHYS 416. Mutually Exclusive: Cannot register for PHYS 517 if student has credit for PHYS 416.

PHYS 519 - PLASMA KINETIC THEORY
Short Title: PLASMA KINETIC THEORY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Plasma kinetic equations (Klimontovich, Liouville, BBGKY, Balescu-Lenard, Fokker-Planck, Vlasov), Vlasov theory of waves and instabilities, connections to fluid plasma models.
PHYS 521 - QUANTUM MECHANICS I
Short Title: QUANTUM MECHANICS I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Graduate level course on non-relativistic quantum mechanics. Topics include early quantum theory, one-dimensional systems, matrix formulation, quantum dynamics, symmetries and conservation laws, bound states, scattering, spin, and identical particles, perturbation theory.

PHYS 522 - QUANTUM MECHANICS II
Short Title: QUANTUM MECHANICS II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Continuation of PHYS 521.

PHYS 526 - STATISTICAL PHYSICS
Short Title: STATISTICAL PHYSICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Selected topics in statistical mechanics, including phase transitions and transport phenomena.

PHYS 532 - CLASSICAL ELECTRODYNAMICS
Short Title: CLASSICAL ELECTRODYNAMICS
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Maxwell's equations, wave propagation, special relativity and covariant formulation, charged-particle dynamics, and radiation.

PHYS 533 - NANOSTRUCTURE AND NANOTECHNOLOGY I
Short Title: NANOSTRUCTURE & NANOTECHNOLOGY I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Physics of structures and devices at the nanometer scale. After a review of solid state physics, topics include nanostructured materials, nanoelectronics, and nanomagnetism. Emphasis on relevance of nanophysics to current and future technologies.

PHYS 534 - NANOSTRUCTURE AND NANOTECHNOLOGY II
Short Title: NANOSTRUCTURE & NANOTECHNOLOGY II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Physics of structures and devices at the nanometer scale. Topics include nanomechanics, bionanotechnology, advanced sensors and photonics. Continuation of PHYS 533.

PHYS 535 - CRYSTALLOGRAPHY AND DIFFRACTION
Short Title: CRYSTALLOGRAPHY & DIFFRACTION
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Study of crystals by diffraction techniques, focusing on x-ray, with an overview of electron and neutron diffraction as well as complementary techniques. Provides mathematical foundations and nomenclature for diffraction and related phenomena. Includes basics of crystallographic analysis and surface/group symmetry, experiment design (courses, geometry, detectors), and data analysis and interpretation. Required for undergraduate MSNE major. Meets with MSNE 435 (additional work for the graduate version). Cross-list: MSNE 535.

PHYS 536 - METHODS OF EXPERIMENTAL PHYSICS I
Short Title: METHODS EXPERIMENTAL PHYSICS I
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A course to familiarize students with basic experimental techniques that are common in academic and industrial laboratories. Topics will include lab safety, mechanical design, LabVIEW(TM) programming, statistics, laboratory electronics, particle detection and vacuum technology. PHYS 537 and PHYS 538 may be taken independently of each other.

PHYS 537 - METHODS OF EXPERIMENTAL PHYSICS II
Short Title: METHODS EXPERIMENTAL PHYSICS II
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture/Laboratory
Credit Hours: 4
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: A course to familiarize students with basic experimental techniques that are common in academic and industrial laboratories. Topic will include computer interfacing and data acquisition, charged particle optics, light optics, thermal measurement and control, and cryogenics. PHYS 537 and PHYS 538 may be taken independently of each other.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Short Title</th>
<th>Department</th>
<th>Grade Mode</th>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Restrictions</th>
<th>Course Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 539</td>
<td>CHARACTERIZATION AND FABRICATION AT THE NANOSCALE</td>
<td>CHARACTER&amp;FABRICATN NANOSCALE</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Introduction to study and creation of nanoscale structures, emphasizing relevant physical principles. Techniques covered include optical, X-ray, electron-based and scanned-probe characterization, as well as patterning, deposition and removal of material.</td>
</tr>
<tr>
<td>PHYS 541</td>
<td>RADIATIVE PROCESSES</td>
<td>RADIATIVE PROCESSES</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Radiation processes and their applications to astrophysical phenomena and space science. The course treats radiative transfer, radiation from moving charges, relativistic covariance and kinematics, bremsstrahlung, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms and molecules.</td>
</tr>
<tr>
<td>PHYS 542</td>
<td>INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS</td>
<td>INTRO NUCLEAR&amp;PARTIC PHYSICS</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>A continuation of PHYS 542.</td>
</tr>
<tr>
<td>PHYS 543</td>
<td>PHYSICS OF QUARKS AND LEPTONS</td>
<td>PHYSICS OF QUARKS AND LEPTONS</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Study of history and current state of nuclear and particle physics with the emphasis on experimental results and how they led to our current understanding of the strong and electroweak interactions. Some recent advances are discussed in detail. Requires completion of a Monte Carlo simulation project. Graduate/Undergraduate Equivalency. PHYS 411. Mutually Exclusive: Cannot register for PHYS 542 if student has credit for PHYS 411.</td>
</tr>
<tr>
<td>PHYS 552</td>
<td>TOPICS IN BIOLOGICAL PHYSICS</td>
<td>TOPICS IN BIOLOGICAL PHYSICS</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Topics will be selected based on special or current research interests.</td>
</tr>
<tr>
<td>PHYS 561</td>
<td>GENERAL RELATIVITY</td>
<td>GENERAL RELATIVITY</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Study of Einstein's theory of gravitation, including cosmological models.</td>
</tr>
<tr>
<td>PHYS 563</td>
<td>INTRODUCTION TO SOLID STATE PHYSICS I</td>
<td>INTRO TO SOLID STATE PHYSICS I</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Fundamental concepts of crystalline solids, including crystal structure, band theory of electrons, and lattice vibration theory. Cross-list: ELEC 563.</td>
</tr>
<tr>
<td>PHYS 564</td>
<td>INTRODUCTION TO SOLID STATE PHYSICS II</td>
<td>INTRO SOLID STATE PHYSICS II</td>
<td>Physics and Astronomy</td>
<td>Standard Letter</td>
<td>Lecture</td>
<td>3</td>
<td>Enrollment is limited to Graduate level students.</td>
<td>Graduate</td>
<td>Continuation of PHYS 563, including scattering of waves by crystals, transport theory, and magnetic phenomena. Cross-list: ELEC 564.</td>
</tr>
</tbody>
</table>
PHYS 569 - ULTRAFAST OPTICAL PHENOMENA

Description: An introduction to surface- and low-dimensional physics covering experimental surface physics and ultra-high vacuum technology, crystal structure, chemical analysis, epitaxy, nanoscale electronic and magnetic structures and devices, elementary excitations, optical properties and nanoscale sensitive magnetic and non-magnetic spectroscopies.

PHYS 568 - QUANTUM MATERIALS

Description: An introduction to quantum materials. Topics include magnetic, fermionic, and bosonic systems.

PHYS 567 - QUANTUM PHASE TRANSITIONS

Description: Introductory course for graduate students. Topics include fundamental processes in cosmic and laboratory plasmas. Basic plasma characteristics, charged particle motion, waves in plasmas, magnetohydrodynamics, kinetic theory. Includes a substantial computational project related to plasma physics. Graduate/Undergraduate Equivalency: PHYS 480. Mutually Exclusive: Cannot register for PHYS 580 if student has credit for PHYS 480.

PHYS 566 - SURFACE PHYSICS

Description: This course uses real data on archetypal materials to illustrate the thermodynamic and transport properties of solids, and principles of materials synthesis. The goal is building a phenomenological understanding of topics including the origin of magnetism; interactions and long range order; phase transitions (magnetism; superconductivity); quantum oscillations and Landau levels.

PHYS 565 - QUANTUM PHYSICS

Description: This is an introductory course at the graduate level. Topics to be discussed include: atomic structure, principles of lasers, fundamental interactions of atoms with electromagnetic radiation, including coherent effects, laser spectroscopy, quantum optics, and laser cooling and trapping of atoms, and Bose-Einstein condensation.

PHYS 564 - MODERN ATOMIC PHYSICS

Description: This course uses real data on archetypal materials to illustrate the thermodynamic and transport properties of solids, and principles of materials synthesis. The goal is building a phenomenological understanding of topics including the origin of magnetism; interactions and long range order; phase transitions (magnetism; superconductivity); quantum oscillations and Landau levels.

PHYS 563 - QUANTUM ELECTRODYNAMICS

Description: This is an introductory course at the graduate level. Topics to be discussed include: atomic structure, principles of lasers, fundamental interactions of atoms with electromagnetic radiation, including coherent effects, laser spectroscopy, quantum optics, and laser cooling and trapping of atoms, and Bose-Einstein condensation.

PHYS 562 - FUNDAMENTALS OF QUANTUM OPTICS

Description: Discussion of quantization and statistical properties of light fields; interaction between atoms and light; non-classical states; basic laser theory; quantum effects of nonlinear optics; introduction to atom optics.

PHYS 561 - MODERN ATOMIC PHYSICS

Description: This is an introductory course at the graduate level. Topics to be discussed include: atomic structure, principles of lasers, fundamental interactions of atoms with electromagnetic radiation, including coherent effects, laser spectroscopy, quantum optics, and laser cooling and trapping of atoms, and Bose-Einstein condensation.

PHYS 560 - ADVANCED TOPICS IN PHYSICS

Description: This course uses real data on archetypal materials to illustrate the thermodynamic and transport properties of solids, and principles of materials synthesis. The goal is building a phenomenological understanding of topics including the origin of magnetism; interactions and long range order; phase transitions (magnetism; superconductivity); quantum oscillations and Landau levels.

PHYS 559 - ULTRAFAST OPTICAL PHENOMENA

Description: This course covers the generation, propagation, and measurement of short laser pulses, of duration less than one picosecond. Concepts include mode locking, the effects of dispersion, optical pulse amplification, and time-domain non-linear optical phenomena. Intended as an introduction to ultrafast phenomena for graduate students or advanced undergraduates; a basic understanding of electromagnetic waves and of quantum mechanics is assumed. Cross-list: ELEC 569.

Course URL: www.ece.rice.edu/~daniel/569/569files.html (http://www.ece.rice.edu/~daniel/569/569files.html)
PHYS 601 - FRONTIERS IN CONDENSED MATTER PHYSICS
Short Title: FRONTIERS IN CONDENSED MATTER
Department: Physics and Astronomy
Grade Mode: Satisfactory/Unsatisfactory
Course Type: Seminar
Credit Hour: 1
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This seminar will serve as an introduction to current research topics in modern condensed matter physics. Lectures will be given by experts in condensed matter physics at Rice, Columbia University, and other international locations. Repeatable for Credit.

PHYS 605 - COMPUTATIONAL ELECTRODYNAMICS AND NANOPHOTONICS
Short Title: ELECTRODYNAMICS & NANOPHOTONIC
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: This course covers computational and numerical methods for calculating electromagnetic fields and propagation in complex geometries on the nano and microscale. Methods include the finite difference time domain method, boundary element methods, Greens functions methods, finite element methods, the discrete dipole approximation and relaxation methods. Cross-list: ELEC 605. Repeatable for Credit.

PHYS 610 - BIOLOGICAL AND MOLECULAR SIMULATION
Short Title: METHODS OF MOLECULAR SIMUL
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Prerequisite(s): CHBE 611 or BIOC 589 or BIOE 589 or BIOS 589 or CHEM 520 or PHYS 526
Description: Modern simulation techniques for classical atomistic systems. Review of statistical mechanical systems. Monte Carlo and molecular dynamics simulation techniques. Extensions of the basic methods to various ensembles. Applications to simulations of large molecules such as proteins. Advanced techniques for simulation of complex systems, including constraint satisfaction, cluster moves, biased sampling, and random energy models. Cross-list: BIOE 610.

PHYS 622 - QUANTUM FIELD THEORY
Short Title: QUANTUM FIELD THEORY
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: An introduction to relativistic quantum field theory. Topics include: quantization of scalar, spinor, and vector fields; Feynman diagrams; gauge theories, including QED and QCD; renormalization; and functional-integral methods.

PHYS 643 - CELL MECHANICS, MECHANOTRANSDUCTION AND THE CELL MICROENVIRONMENT
Short Title: MECHANOTRANSDUCTION
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Mechanotransduction is a fundamental process essential for living systems and plays a fundamental role in cell signaling, cancer metastasis and stem cell differentiation. Additionally, fundamentally biological processes such as endocytosis cell fusion and cell migration are driven by a coordinated interplay of molecular interactions that drive membrane deformation. This course will survey the current understanding of mechanotransduction and the mechanical properties of cells and their microenvironment, including membrane and cytoskeletal mechanics. Experimental approaches for measuring and manipulating the material properties of cells and their environment; including optical, electrical and magnetic techniques will be covered. A variety of application will be covered, including manipulation in engineering of mechanotransduction pathways to drive cell migration and stem cell differentiation. Instructor Permission Required. Cross-list: BIOE 643.

PHYS 663 - CONDENSED MATTER THEORY: APPLICATIONS
Short Title: CONDENSED MATTER THRY:APLICATN
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Applications of techniques developed in PHYS 664.

PHYS 664 - CONDENSED MATTER THEORY: MANY-BODY FORMALISM
Short Title: COND MATTR THRY:MANY BODY FORM
Department: Physics and Astronomy
Grade Mode: Standard Letter
Course Type: Lecture
Credit Hours: 3
Restrictions: Enrollment is limited to Graduate level students.
Course Level: Graduate
Description: Formal structure of many-body theory as used in condensed matter physics.
**PHYS 665 - TOPOLOGY IN MODERN QUANTUM PHYSICS AND FIELD THEORY**

**Short Title:** TOPOLOGY IN QUANTUM PHYSICS  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Lecture  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Graduate level students.  
**Course Level:** Graduate  
**Prerequisite(s):** PHYS 521  
**Description:** Topology plays an increasingly important role in modern quantum physics, and its applications to a variety of topics range from the theory of liquid crystals to topological defects in quantum field theory. This course will introduce some key notions from topology, such as homotopy and homology, and differential geometry and discuss their applications in quantum physics, from the theory of vortices in superconductors, to monopoles in non-Abelian gauge theories, to instantons in Yang–Mills theory. The course also covers the concepts of topological insulators and superconductors that have become an important part of the vocabulary of modern condensed matter physics. The course may be useful for students pursuing research in condensed matter and AMO physics, as well as high-energy physicists interested in topological defects in quantum field theory.

**PHYS 677 - SPECIAL TOPICS**

**Short Title:** SPECIAL TOPICS  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Internship/Practicum, Seminar, Lecture, Laboratory  
**Credit Hours:** 1-4  
**Restrictions:** Enrollment is limited to Graduate or Visiting Graduate level students.  
**Course Level:** Graduate  
**Description:** Topics and credit hours vary each semester. Contact department for current semester’s topic(s). Repeatable for Credit.

**PHYS 700 - TEACHING PRACTICUM**

**Short Title:** TEACHING PRACTICUM  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Internship/Practicum  
**Credit Hours:** 3  
**Restrictions:** Enrollment is limited to Graduate level students.  
**Course Level:** Graduate  
**Description:** Supervised teaching for graduate students. Repeatable for Credit.

**PHYS 710 - GRADUATE SEMINAR IN PHYSICS AND ASTRONOMY**

**Short Title:** GRAD SEMINAR IN PHYS & ASTR  
**Department:** Physics and Astronomy  
**Grade Mode:** Satisfactory/Unsatisfactory  
**Course Type:** Seminar  
**Credit Hour:** 1  
**Restrictions:** Enrollment is limited to Graduate level students.  
**Course Level:** Graduate  
**Description:** Participation in department colloquia and additional sessions on topics of interest to entering graduate students. Required of all Physics and Astronomy graduate students during their first Fall semester at Rice.

**PHYS 800 - GRADUATE RESEARCH**

**Short Title:** GRADUATE RESEARCH  
**Department:** Physics and Astronomy  
**Grade Mode:** Standard Letter  
**Course Type:** Research  
**Credit Hours:** 1-15  
**Restrictions:** Enrollment is limited to Graduate level students.  
**Course Level:** Graduate  
**Description:** Thesis research under the supervision of department faculty. Repeatable for Credit.

**Description and Code Legend**

*Note: Internally, the university uses the following descriptions, codes, and abbreviations for this academic program. The following is a quick reference:*

**Course Catalog/Schedule:**
- Course offerings/subject code for Astronomy: ASTR
- Course offerings/subject code for Physics: PHYS

**Department Description and Code**
- Physics and Astronomy: PHYS

**Undergraduate Degree Descriptions and Codes**
- Bachelor of Arts degree: BA
- Bachelor of Science degree: BS

**Undergraduate Major Descriptions and Codes**
- Major in Physics (attached to the BA and BS degrees): PHYS
- Major in Astronomy (attached to the BA degree): ASBA
- Major in Astrophysics (attached to the BS degree): ASTR
- Major in Chemical Physics (attached to the BS degree): CPHY

**Undergraduate Major Concentration Descriptions and Codes**
- Major Concentration in Applied Physics (BS degree-PHYS majors): APPS
- Major Concentration in Biological Physics (BS degree-PHYS majors): BIPS
- Major Concentration in Computational Physics (BS degree-PHYS majors): COPS
- Major Concentration in General Physics (BS degree-PHYS majors): GEPS

**Undergraduate Minor Description and Code**
- Minor in Physics: PHYM

**Graduate Degree Descriptions and Codes**
- Master of Science Teaching degree: MST
- Master of Science degree: MS
- Doctor of Philosophy degree: PhD

**Graduate Degree Program Description and Code**
- Degree Program in Physics: PHYS
- Degree Program in Science Teaching: STEA

**CIP Code and Description**

• ASBA Major/Program: CIP Code/Title: 40.0201 - Astronomy
• ASTR Major/Program: CIP Code/Title: 40.0202 - Astrophysics
• **CPHY** Major/Program: CIP Code/Title: 40.0508 - Chemical Physics
• **PHYS** Major/Program: CIP Code/Title: 40.0801 - Physics, General
• **STEA** Major/Program: CIP Code/Title: 13.1316 - Science Teacher Education/General Science Teacher Education
• **APPS** Major Concentration: CIP Code/Title: 40.0899 - Physics, Other
• **BIPS** Major Concentration: CIP Code/Title: 26.0203 - Biophysics
• **COPS** Major Concentration: CIP Code/Title: 40.0899 - Physics, Other
• **GEPS** Major Concentration: CIP Code/Title: 40.0801 - Physics, General
• **PHYM** Minor: CIP Code/Title: 40.0801 - Physics, General

1 Classification of Instructional Programs (CIP) 2020 Codes and Descriptions from the National Center for Education Statistics: https://nces.ed.gov/ipeds/cipcode/